ADSORPTION OF Cu2+ IONS ON POWDER ACTIVATED CARBON AND A SODIQUE BENTONITE

A.K. OUAKOUAK, L. YOUCEF

Abstract


The aim of this work is to study the effectiveness of retention of cations Cu2+ by adsorption on a powder activated carbon (CAP) and on non-treated bentonite of Maghnia (Bb). The treated solutions are synthetic solutions of copper in distilled water.

Our tests have shown that the retention of copper on the PAC and the Bb is a reversible phenomenon. The copper removal efficiencies are acceptable, and the maximum efficiency was reached after 4 hours for PAC and after 20 minutes using the Bb. Kinetic adsorption can be described more appropriately by the kinetic model of pseudo-second order.

In addition, the pH of treatment affects the adsorption procedure and performance improved with increasing pH. The copper amount adsorbed increases with the increase of the dose of the adsorbent (0.5 to 8 g/l). The adsorption of copper follows the laws of Langmuir, Freundlich, BET and Dubinin-Radushkevich. The amount adsorbed is improved with the increase of the initial content of copper (1to10 mg/l) using the CAP and the Bb.


Keywords


copper, adsorption, powder activated carbon, bentonite

Full Text:

PDF (Français)

References


Desalination, No 272, pp. 66–75.

Bohli T., Villaescusa I., Ouederni A., (2013). Comparative Study of Bivalent Cationic Metals Adsorption Pb(II), Cd(II), Ni(II) and Cu(II) on Olive Stones Chemically Activated Carbon. J Chem. Eng. Process Technol, Vol 4, pp.1-7.

Bouhamed F., Elouear Z., Bouzid J., (2012). Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, No 43, pp. 741–749.

Brunauer S., (1943). The adsorption of gases and vapors, Volume I, Physical Adsorption, Oxford University press, United States, 511p.

Calvet R., (1989). Adsorption of Organic Chemicals in Soils. Environmental Health Perspectives, Vol. 83, pp. 145-177.

Chitour S.E., (1981). Chimie des surfaces, Introduction à la catalyse, Edition OPU. Alger.

Deng L., Shi Z., (2015). Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution. Journal of Alloys and Compounds, N° 637, pp.188–196.

Dubinin M.M., Radushkevich L.V., (1947). Equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. Phys. Chem. Sect. USSR. No.55, pp.331–333.

Eloussaief M., Jarraya I., Benzina M., (2009). Adsorption of copper ions on two clays from Tunisia: pH and temperature effects. Applied Clay Science, No 46, pp. 409–413.

Freundlich, H.M.F., (1906). Uber die adsorption in losungen. Zeitschrift fur Physikalische Chemie (Leipzig), Vol 57 (A), pp. 385–470.

Ghaedi A.M., Ghaedi M., Vafaei A., Iravani N., Keshavarz M., Rad M., Tyagi I., Agarwal S., V.K. GUPTA., (2015). Adsorption of copper (II) using modified activated carbon prepared from Pomegranate wood: Optimization by bee algorithm and response surface methodology. Journal of Molecular Liquids, No 206, pp. 195–206.

Gusain D., Srivastava V., Sharma Y.C., (2014). Kinetic and thermodynamic studies on the removal of Cu(II) ions from aqueous solutions by adsorption on modified sand. Journal of Industrial and Engineering Chemistry, No. 20, pp. 841–847.

Hall K.R., Eagleton L.C., Acrivos A., Vermeulen T., (1966). Pore and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fund., No 5, pp. 212–223.

Ho Y.S. et Mckay G., (1999). The sorption of lead (II) ions on peat, Water Res., Vol 33, pp. 578-584.

Ho Y.S., Ng J.Y., Mc kay G., (2000). Kinetics of pollutant sorption by biosorbents. Separation and purification methods, N° 29-2, pp.189-232.

Jiang M., Jin X., Lu X., Chen Z., (2010). Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination, No 252, pp. 33–39.

Lagergren S., (1898), About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens. Handlingar, No 24 (4), pp. 1-39.

Langmuir I., (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., No 40, pp. 1361–1367.

Larakeb M., (2015). Elimination du zinc par adsorption et par coagulation-floculation. Thèse de Doctorat en Sciences hydrauliques, Département de génie civil et d’hydraulique, Université de Biskra, Algérie.

Larakeb M., Youcef L., Achour S., (2015). Effet de différents paramètres réactionnels sur l’élimination du zinc par adsorption sur la bentonite de Mostaghanem et sur le Kaolin, Revue Courrier du Savoir (CSST), N° 19, pp.49-54.

Nandi B.K., Goswami A., Purkait M.K., (2009). Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials, No. 2161, pp.387–395.

O.M.S, (2004). Guidelines for drinking-water quality, 3rd Ed., Vol.1, Recommendation, Geneva.

Ozcan A.S., Erdem B., Ozcan A., (2005). Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids and Surfaces A: Physicochem. Eng. Aspects, No. 266, pp.73– 81.

Patnukao P., Kongsuwan A., Pavasant P., (2008). Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark. Journal of Environmental Sciences, No .20, pp.1028–1034.

Potelon J.L., Zysman K., (1998). Le guide des analyses de l'eau potable, Edition La Lettre du Cadre Territorial, Voiron, France.

Rahman M., Adil M., Yusof A.M., Kamaruzzaman Y.B., Ansary R.H., (2014). Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells. Materials, No 7, pp. 3634-3650.

Rodier J., (1996). L'analyse de l'eau : eaux naturelles, eaux résiduaires, eau de mer, 8éme édition, Ed . Dunod, Paris.

Senthilkumar P., Ramalingam S., Sathyaselvabala V., Kirupha S.D., Sivanesan S., (2011). Removal of copper (II) ions from aqueous solution by adsorption using cashew nut shell, Desalination, N° 266, pp. 63–71.

Siéwé J.M., Woumfo E.D., Djomgoue P., Njopwouo D., (2015). Activation of clay surface sites of Bambouto's Andosol (Cameroon) with phosphate ions: Application for copper fixation in aqueous solution. Applied Clay Science, No 114, pp. 31–39.

Sun L.M. et Meunier F., (2003). ‘Adsorption. Aspects théoriques’. Techniques de l’Ingénieur, traité Génie des procédés, J 2730−1, pp.1-16.

Tumin N.D., Chuah A.L, Zawani Z., Rashid S.A., (2008). Adsorption of copper from aqueous solution by elais guineensis kernel activated carbon. Journal of Engineering Science and Technology, Vol. 3, No. 2, pp.180 – 189.

Veglio F., Esposito A., Reverberi A.P., (2003). Standardisation of heavy metal biosorption tests: equilibrium and modelling study. Process Biochemistry, N° 38, pp. 953-961.

Veli S. et Alyuz B., (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, No .149, pp. 226–233.

Venkatesan T., Bommannan N., Kulanthai K., Krishnamoorthy S., (2014). A Comparative Study Of Removal Of Cu (II) From Aqueous Solutions By Thermally And Sulphuric Acid Activated Sesamum Indicum Carbons. IJSTR, Vol 3, pp.42-49.

Weber W.J. et Morris J.C., (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng, No 89, pp. 31–60.

Weng C., Tsai C., Chu S., Sharma Y.C., (2007). Adsorption characteristics of copper (II) onto spent activated clay. Separation and Purification Technology, No 54, pp.187–197.

Yadav D., Kapur M., Kumar P., Mondal M.K., (2015). Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue. Process Safety and Environmental Protection, No. 94, pp.402– 409.

Youcef L., Ouakouak A., Achour S., (2011). Elimination de polluants minéraux et organiques des eaux par adsorption sur des eaux par adsorption sur une bentonite sodique. Séminaire international sur les ressources en eau au Sahara, 19-20 Janvier, Ouargla, Algérie.

Youcef L. et Achour S., (2006). Élimination du cuivre par des procédés de précipitation chimique et d'adsorption. Courrier du Savoir, N°07, pp.59-65.

Zhou Q., Wang X., Liu J., Zhang L., (2012). Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol–Gel method. Chemical Engineering Journal, N° 200-202, pp. 619–626.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.