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ABSTRACT 

Two nonlinear models of the roll motion of ships are discussed and analytically solved. 

Both models are second-order differential equations with nonlinear restoring and 

damping moments. A new approach to the homotopy perturbation method is applied to 

derive analytical expressions for the roll angle, velocity, acceleration and restoring and 

damping moments. The analytical results are validated by direct comparison with the 

fourth-order Runge‒Kutta method. The analytical approach of this paper can be 

efficiently extended to various vibrating dynamical models arising in mechanical 

systems. 

Keywords: Mathematical modeling, ship dynamics, capsizing, restoring and damping 

moments, analytical solution. 

INTRODUCTION 

Generally, ships are subjected to three types of displacement motions (heave, sway and 

surge) in addition to three angular motions (yaw, pitch, and roll), as depicted in Figure 1. 

Equations of motion are based on either Lagrange’s equation or Newton’s second law 

(Ibrahim et al., 2010). 
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Figure 1: Schematic diagram of a ship showing the six degrees of freedom 

An accurate prediction of a ship’s roll motion is essential for the design of dynamic 

stability, which relies on the precision of calculating nonlinear roll damping properties 

(Jang et al., 2010). To that end, the literature has been intensively enriched with 

investigations of the roll motion of ships over the past few decades. Wilson et al. (2006) 

developed an unsteady RANS method for the viscous phenomenon of roll decay motion 

for a surface combatant (Wilson et al., 2006, Falzarano et al., 1992) and used global 

analysis techniques to study the transient rolling motions of a small ship that is subjected 

to periodic wave excitation. 

Numerical and analytical studies that aim at predicting a ship roll motion are important 

and complement each other even though there is a dispute about which of the two serves 

as a preliminary to the other. Many numerical approaches usually start by “guessing” an 

initial solution and then iteratively refine the solution until a previously defined error 

metric is minimized. The heavy computational effort for this task may be dramatically 

reduced by choosing better “initial guesses”. With a reliable analytical solution, this could 

be easily achieved. In the field of computer science (neuronal networks), the clever choice 

of initial start parameters has shown large performance improvements. With the analytical 

solution, however, similar improvements could also be expected for the simulation roll 

motion. However, although numerical solutions are efficiently obtained, there are some 

pitfalls that make many engineers and applied scientists prefer analytical solutions if they 

can be obtained. The most serious pitfalls that come with numerical solutions are 

numerical stabilities, and adjusting parameters to match the numerical data may be 

extremely difficult to achieve (Devi et al., 2020). 

Both analytical and numerical studies of roll motion are essential for the investigation of 

parametric rolling of ships, which can build up to high roll angles and possibly lead to 

capsizing. For example, Hamamoto et al. (1996) performed an analytical study to identify 

the occurrence of a critical condition leading to the capsize phenomenon for a container 

ship due to parametric rolling. However, (Munif et al., 2000) performed several numerical 

simulations to validate a six-degree-of-freedom nonlinear model to study the parametric 

roll and capsizing limits for a ship in the Arctic Sea. Ghamari et al. (2020) performed 
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both numerical and experimental investigations to study the parametric resonance in roll 

motion for a fishing vessel in regular waves. 

Mathematical modeling of marine vessels is under continuous development to keep up 

with new requirements of marine ship design, maneuvering, operation and safety. While 

the models become more complicated in terms of stronger nonlinearity damping terms, 

the development of new efficient numerical and analytical schemes makes it possible to 

simulate the ship response traveling with a complicated environmental disturbance (Xu 

et al., 2019). Hou et al. (2018) identified a roll motion equation for floating structures in 

irregular waves using a combination of the random decrement technique and support 

vector regression. Kawahara et al. (2011) used Ikeda’s method to calculate the roll 

damping of various ship hulls with various bilge keels. (Xu et al., 2019) used the least 

squares method followed by singular value decomposition to estimate the uncertainty of 

the hydrodynamic coefficients of a nonlinear maneuvering model based on planar motion 

mechanism tests. For more recently published relevant work, see (Mitra et al., 2018; 

Dashtimanesh et al., 2019; Sun et al., 2019). 

In this paper, two general nonlinear dynamic models of ship motion are analytically 

discussed. One is a nonlinear dynamical system with a single degree of freedom of a ship 

of free decay, and the other is quadratic roll damping with a nonlinear restoring function. 

A new version of the homotopy perturbation method is employed to derive analytical 

expressions for the roll angle, velocity and restoring and damping moments for each 

model. 

MATHEMATICAL FORMULATION OF THE PROBLEM 

A typical equation representing a nonlinear ship rolling motion of a free decay is given 

by 

(I + A)x
••

+ ε F(x, x
•
) + G(x) = 0                                                        (1) 

where x is the roll angle, I is the roll inertia moment, A is the added inertia moment, 

ϵ F(x, ẋ) is a nonlinear damping moment in which  is a perturbation expansion parameter 

and G(x) is a nonlinear restoring moment. The first term represents the force of inertia, 

and the second and third terms describe the moments of damping and regeneration. 

Dividing by (I + A), we obtain the normalized form (Sun et al., 2019). 

�̈� + 𝑔(𝑥) = 𝜀𝑓(𝑥, �̇�)        (2) 

where the nonlinear functions g(x) and εf(x, ẋ) are the new restoring and damping 

moments, respectively. 
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ANALYTICAL EXPRESSION OF ROLL ANGLE AND VELOCITY 

As an exact solution of the nonlinear governing equation of the roll motion is almost 

impossible to find, the search for approximate numerical or experimental solutions is a 

necessity. There are many numerical and analytical methods that are prone to producing 

reliable approximate solutions and have been employed by many researchers in various 

fields of engineering and sciences. Of the numerical methods, the finite difference method 

(Tirmizi et al., 2002) includes weighted residual numerical methods such as spectral 

methods (Bhrawy et al., 2013), wavelet-based methods (Abualrub et al., 2015), and 

spline-based methods (Abukhaled et al., 2011). Among the analytical methods that have 

proven to be very effective in solving nonlinear initial-boundary value problems, we 

mention the variational iteration method (He, 2007; Wazwaz, 2013; Abukhaled 2013), 

Adomian decomposition method (Duan et al., 2015), homotopy analysis method (Liao et 

al., 2012), Green’s function-based method (Abukhaled et al., 2020), and differential 

transformation method (Hassan et al., 2008). 

One of the most effective analytical methods and most used in the last two decades is the 

homotopy perturbation method (HPM). First introduced by He (1999), HPM has 

encountered many modifications to encompass a wide range of nonlinear models that 

have arisen in physical, chemical and engineering sciences (He, 2000, Biazar 2008, 

Swaminathan 2020, Saravanakumar 2020 and Wassermann 2016. In the next two 

subsections, we employ a new form of the HPM to derive approximate analytical 

solutions of the dynamics of roll motions. 

A nonlinear system with a single degree of freedom 

The second-order nonlinear dynamic system with a single degree of freedom for roll 

motion is governed by (Hariharan et al., 2016). 

d2x

dt2 + (2α1 + α2 |
dx

dt
|) |

dx

dt
| + β1x + β3x3 + β5x5 = 0               (3) 

With initial conditions, 

x(0) = 1, x′(0) = 0               (4) 

We construct the homotopy for Eq. (3) as follows: 

 

(1 − p) (
d2x(t)

dt2 ) + 2α1
dx(t)

dt
+ β1x(t)        (5) 

where 𝑷 ∈ [𝟎, 𝟏] is an embedding parameter. The approximate homotopy solution is 

expressed in series form 

 
x(t) = x0(t) + px1(t) + p2x2(t) + ⋯

        
(6) 

Substituting Eq. (6) into Eq. (5) and equating like powers of 𝒑 leads to the linear system 
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p0 : 
d2x0(t)

dt2 + 2α1
dx0(t)

dt
+ β1x0(t) = 0         (7) 

p1 : 
d2x1(t)

dt2 + 2α1
dx1(t)

dt
+ β1x1(t) + 2α2 (

dx0(t)

dt
)

2

+ β3(x0(t))
3

+ β5(x0(t))
5

= 0  (8) 

Subject to initial conditions 

x0(0) = 1, x0
′(0) = 0                      (9) 

x1(0) = 0, x1
′(0) = 0                    (10) 

Solving systems (7) to (10) gives a two-term HPM analytical expression for the roll angle 

x(t) from which the analytical expressions of the velocity, acceleration, and restoring and 

damping moments are, respectively, given by the following:

  

 

Velocity =  
dx(t)

dt
       (11) 

 

Accelearation =  
dx2(t)

dt2        (12) 

Restoring momrnt r(x(t)) =  β1(x(t)) + β3(x(t))
3

+  β5(x(t))
5
      (13) 

Damping moment =  α1
dx(t)

dt
+ α1 (

dx(t)

dt
)

2

      (14) 

Quadratic roll damping with nonlinear restoring function 

The quadratic roll damping with the nonlinear restoring function was given by the 

fol lowing (Bass et al., 1988)  

𝑑2𝑥

𝑑𝑡2 + 2𝜔Ϛ (
𝑑𝑥

𝑑𝑡
+ 𝜀 |

𝑑𝑥

𝑑𝑡
|

𝑑𝑥

𝑑𝑡
) + 𝜔2(𝑥 + 𝜇𝑥3) = 0       (15) 

Subject to initial conditions: 

𝑥(0) = 1, 𝑥′(0) = 0       (16)

 To analytically solve Eqs. (15) using (16), we begin by constructing the homotopy as 

follows: 

1 − 𝑝 (
𝑑2𝑥(𝑡)

𝑑𝑡2 + 2𝜔Ϛ
𝑑𝑥

𝑑𝑡
+ 𝜔2𝑥(𝑡)) + 𝑝 (

𝑑2𝑥(𝑡)

𝑑𝑡2 ) + 2𝜔Ϛ
𝑑𝑥

𝑑𝑡
+ 2𝜔𝜀Ϛ (

𝑑𝑥

𝑑𝑡
)

2

+

𝜔2𝑥(𝑡) + 𝜔2𝜇(𝑥(𝑡))
3

= 0       (17) 

where P ∈ [0,1] is an embedding parameter. Substituting the series solution given by 

(6) into Eq. (17) and equating like powers of p leads to the linear system 

𝑝0 : (
𝑑2𝑥0(𝑡)

𝑑𝑡2 + 2𝜔Ϛ
𝑑𝑥0(𝑡)

𝑑𝑡
+ 𝜔2(𝑥0(𝑡))) = 0       (18) 
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𝑝1 : (
𝑑2𝑥1(𝑡)

𝑑𝑡2 + 2𝜔Ϛ
𝑑1(𝑡)

𝑑𝑡
+ 𝜔2(𝑥1(𝑡)) + 2𝜔𝜀Ϛ (

𝑑𝑥0(𝑡)

𝑑𝑡
) + 𝜔2𝜇(𝑥0(𝑡))3) = 0  (19) 

Solving systems (18) and (19) subject to initial conditions (9) and (10) and 

substituting the results into Eq. (6) and then taking the limit as p → 1 gives a two-

term HPM solution. The velocity, acceleration and damping and restoring moments 

are obtained as in (11) - (14). 

NUMERICAL EXAMPLES AND DISCUSSION 

Example 1 

Consider systems (3) - (4) with the following experimental values: 

𝛼1 = 0.02, 𝛼2 = 0.002, 𝛽1 = 0.3948, 𝛽3 = 0.3948 × 10−4, 𝛽5 = 0.3948 ×
10−4, 𝑙 = 1  (20) 

𝑥(𝑡) = 0.00025 𝑐𝑜𝑠(0.62802𝑥 − 1.6662)𝑒−0.1𝑥 + (0.000315 cos(1.8841𝑥 −

0.14326) + 0.059 𝑐𝑜𝑠(0.62802𝑥 − 1.6345)) 𝑒−0.06𝑥 + (−0.002 +

0.00067 𝑐𝑜𝑠(1.256𝑥 + 3.0991))𝑒−0.01𝑥 + 1.0065 𝑒−0.02𝑥 𝑐𝑜𝑠(0.62802𝑥 +

0.02749) (21) 

To test the accuracy of solution (20), it will be compared to the solution obtained by 

the Chebyshev wavelet method (CWM) (G. Hariharan 2016) and a fourth-order 

Runge‒Kutta numerical solution (RK4). Table I shows that the proposed analytical 

expression for the roll angle (G. Hariharan 2016) is in much stronger agreement with 

the RK4 solution than the CWM. 

Table 1: Comparison between t he  proposed method, CWM, and RK4 for the 

roll angle Eq. (20) 

Time 

(s) 

Roll angle x(t) Absolute Error 

Proposed 

(HPM) 

CWM 

[32] 
Numerical 

Proposed 

(HPM) 
CWM [32] 

0.0 0.99996 1.00000 1.000000000 0.000040000 0.000000000 

0.1 0.99799 0.99813 0.998009389 0.000019389 0.000120610 

0.2 0.99204 0.99254 0.992056171 0.000016171 0.000483830 

0.3 0.98216 0.98321 0.982180128 0.000020128 0.001029900 

0.4 0.96842 0.97014 0.968436675 0.000016675 0.001703300 

0.5 0.95087 0.95335 0.950896513 0.000026513 0.002453500 

0.6 0.92962 0.93282 0.929645322 0.000025322 0.003174700 

0.7 0.90477 0.90857 0.904783218 0.000013218 0.003786800 

0.8 0.87641 0.88058 0.876424358 0.000014358 0.004155600 

0.9 084468 0.84885 0.844696325 0.000016325 0.004153700 

1.0 0.80972 0.81340 0.809739454 0.000019545 0.003660500 
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Moreover, the proposed analytical solution maintains a strong convergence rate and 

stability over a very large time domain, while the Chebyshev wavelet method starts 

to diverge as soon as t increases beyond 1, as shown in Fig. 2 and Fig. 3. 

 

 

Figure 2: Comparison between the  analytical and numerical roll angle curves 

of Eq. (20). 

 

 

Figure 3: Chebyshev roll angle curve of Eq. (20) showing divergence for t 

larger than 1. 
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Fig. 4 shows that the velocity obtained analytically using the proposed HPM is in 

strong agreement with RK4 and remains stable over a large time interval. 

Figs. 5 and 6 depict the restoring and damping moment curves, respectively, with 

comparisons to the numerical RK4 curves. 

Figs. 5 and 6 depict the restoring and damping moment curves, respectively, with 

comparisons to the numerical RK4 curves. 

 

Figure 4: Comparison between the  analytical and numerical velocity curves 

for Example 1. 

 
 

Figure 5: Analytical and numerical restoring moment curves for Example 1 
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Figure 6: Analytical and numerical damping moment curves for Example 1 

Example 2  

Consider systems (15)-(16) with the following experimental values (He, 2007): 

𝜔 = 5, Ϛ = 0.02, 𝜀 = 1, 𝜇 = 0.5, 𝑙 = 0.25                                                              (22) 

The two-term homotopy solution from Eq. (18) - (19), which represents the roll angle, 

is given by 

𝑥(𝑡) =   (0.3475 𝑐𝑜𝑠(4.999𝑥 − 1.6108) + 0.00116 𝑐𝑜𝑠(14.997𝑥 −

0.09001))𝑒−0.3𝑥 + (−0.01765 + 0.00588 𝑐𝑜𝑠(9.998𝑥 + 3.11492))𝑒−0.2𝑥 +

0.5689 𝑒−0.1𝑥 𝑐𝑜𝑠(4.999𝑥 + 0.64011)     (23) 

Table 2 shows that the proposed analytical solution of the roll angle is in strong 

agreement with the numerical RK4 solution. Figures 7 and 8 show that the roll angle 

and velocity curves maintain a high rate of accuracy and stability over a large interval 

domain. 

Tables 1 and 2 show that the analytical and numerical solutions for the roll angle 

and the velocity are in strong agreement when t is sufficiently close to the initial 

value. Figs. 6 and 7 show the analytical and numerical roll angle and velocity curves 

versus time. It is clear that as time moves far away from the initial point 0, the 

analytical curves deviate from the numerical curves, as expected, but this deviation 

is still small, and most importantly, the analytical curves maintain stability. 
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Table 2: Comparison between the proposed method and RK4 for the roll angle 

Eq. (22) 

Time (s) Proposed (HPM) Numerical Absolute error 

0.00 0.250000000 0.250000000 0.000000000 

0.10 0.218642955 0.218640722 0.000002233 

0.20 0.132910553 0.132873544 0.000037008 

0.30 0.014275399 0.014090036 0.000185363 

0.40 -0.108215489 -0.108722581 0.000507092 

0.50 -0.204127183 -0.204974034 0.000846851 

0.60 -0.248869957 -0.279683043 0.000813086 

0.70 -0.231125751 -0.231375118 0.000249366 

0.80 -0.156876496 -0.156454489 0.000422007 

0.90 -0.047043835 -0.046355431 0.000688405 

1.00 0.069748126 0.070245472 0.000497345 

 

 

 

Figure 7: Comparison between the analytical and numerical roll angle curves 

of Eq. (22). 
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Figure 8: Comparison between the  analytical and numerical velocity curves 

for Example 2 

 

 
Figure 9: Analytical and numerical restoring moment curves for Example 2 
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Figure 10:  Analytical and numerical damping moment curves for Example 2 

 

Figures 9 and 10 depict the analytical and numerical curves of the restoring and 

damping moments, respectively. 

From the rolling curves (Figs. 2 and 7) and their corresponding velocity curves (Figs. 

4 and 8), it is inferred that the roll angle always decreases rapidly with time. This 

rapid decline is due to the initial roll angle and then stable roll response patterns at 

the wave periods. The roll damping coefficients are determined using the logarithmic 

decrement method using the first two peaks of the roll decay curve. The damping 

ratio and natural frequency are obtained using the following equations from the 

logarithmic decrement process (Wazwaz et al., 2013). 

𝛿 = 𝐼𝑛 (
𝜙1

𝜙2
) , 𝜉 = √1 + (

2𝜋

𝑑
)

2

, 𝑇𝑛 = 𝑑𝑇 √1 − 𝜉2   (24) 

where 𝛿 is the logarithmic decrement, 𝜑1 and 𝜑2 are the two successive roll 

amplitudes, 𝜉 is the roll damping ratio, Tn is the roll natural period and 𝑑𝑇 is the time 

difference between two successive roll amplitudes. 

The maximum amplitude of the roll motion of these two models depends upon the 

initial conditions. In Fig. 11, the black line represents the envelope (line joining the 

peaks of amplitudes) of the roll decay curves. The equation of the envelopes can be 

computed from the following equation: 

𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 =  ±𝑥 (𝑡 = 0)𝑒−
𝑑

2
𝑡
    (25) 

where 𝑑 is the coefficient of 𝑑𝑥. For the considered examples 1 and 2, the envelope 

functions are given by 𝑥(𝑡) = 𝑒−0.02𝑡and(𝑡) = 0.25 𝑒−0.1𝑡 , respectively. Note that 

from these equations, the time for the roll angle to reach a steady state can be 

computed. 
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Figs. 11 and 12 show the curves of the roll angle given in examples 1 and 2 along 

with the envelope curves. 

 

 

Figure 11: Analytical and numerical roll angle and envelope curves for 

Example 1 

 

Figure 12: Analytical and numerical roll angle and envelope curves for 

Example 2 

The velocity curves depicted in Figures 4 and 8 show that the peak amplitudes, which 

are the well-known significant factors of capsizing ships, depend on the initial 

condition. These amplitudes gradually decrease with time. Figs. 5, 6, 9 and 10 also 

show that the moments of regeneration and damping also decrease as time increases. 

These figures also show a nonlinear effect on the roll moment and stress around the 

hull by the width of the bilge keel. Bilge keels affect roll damping mainly through the 

quadratic component of roll damping. 
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CONCLUSIONS 

Two nonlinear second-order equations used as models for ship motions are 

analytically solved to predict roll damping. The analytical decay curves are obtained 

using a simple approach of the homotopy perturbation method. The obtained 

approximate analytical results are shown to be in strong agreement with the numerical 

RK4 results. The simple closed-form analytical results can be used for data 

processing, identification of parameters and roll damping coefficients. The extension 

of the proposed approach is possible in three or several degrees of freedom for 

nonlinear ship motion of heave and pitch. 
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