

ASSESSMENT OF THE GEOPHYSICAL LOCATION OF WATER BOREHOLES IN A GEOLOGICAL TRANSITION ZONE, BURKINA FASO

EVALUATION DE L'IMPLANTATION GEOPHYSIQUE DES FORAGES D'EAU DANS UNE ZONE DE TRANSITION GEOLOGIQUE AU BURKINA FASO

SORO D.D.¹*, KOFFI K.V.², DIABATE A.³

 ¹ Laboratory of Geology, Mineral and Resources (LGRME), UFR of Sciences of the Earth and the Mining Resources (STRM), University Felix Houphouët-Boigny of Cocody-Abidjan, 22 LP 582 Abidjan 22, Côte d'Ivoire
 ² West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL), University Felix Houphouët-Boigny of Cocody-Abidjan, 22 LP 582 Abidjan 22, Côte d'Ivoire
 ³ Executing Agency for the Water and Rural Equipment Works, 01 LP 6643 Ouagadougou 01, Burkina Faso

dimitri.soro@gmail.com

Research Article – Available at http://larhyss.net/ojs/index.php/larhyss/index

Received October 1, 2020, Received in revised form December 2, 2020, Accepted December 5, 2020

ABSTRACT

Mouhoun Loop region is one of the 5 regions having the lowest rates of access to drinking water. Further, the failure rate of Borehole is greater than 30%. This area is underlined by both bedrock and sedimentary rocks. In the area, borehole siting is performed using 1D geophysical investigation techniques such as electrical profiling and electrical sounding. In this study, we decided to analyse this approach in order to see if it is adapted to the geological context. To achieve this, the methodology consisted in analysing the geophysical data of the settlements. Then the results were analysed using statistical tools. The results indicate that failure rates are higher on sedimentary rocks than bedrock rocks. In fact, 91% of the boreholes were implanted in sedimentary zone on the consolidated sandstone. These behave like basement rocks that are very heterogeneous. Also, in these geological formations, the boreholes are not deep enough to reach the deep aquifers. So

© 2020. Soro D.D. and al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

in order to reduce this failure rate, we suggest the use of electrical resistivity tomography. This is a 2D technique that allows you to observe vertical and lateral variations.

Keywords: Electrical profiling, electrical sounding, basement rock aquifers, sedimentary aquifers, borehole siting.

RESUME

La région de la boucle du Mouhoun qui fait partie des 5 régions ayant les plus bas taux d'accès à l'eau potable. De plus, le taux d'échec de réalisation des forages est estimé à plus de 30%. Cette zone s'étend à la fois sur des roches de socle et des roches sédimentaires. Les forages sont implantés dans la zone à l'aide des techniques d'investigations géophysiques 1D comme les trainés et les sondages électriques. Dans cette étude, nous avons décidé d'analyser cette approche afin de voir si celle-ci est adaptée au contexte géologique. Pour y parvenir, la méthodologie a consisté á traiter les données géophysiques des implantations. Ensuite, les résultats ont été analyser à l'aide d'outils statistiques. Les résultats indiquent que les taux d'échecs sont plus élevés sur les roches sédimentaires que les roches de socles. En effet, 91% des forages ont été implantés en zone sédimentaire sur les grès consolidés. Celles-ci se comportent comme des roches de socle qui sont très hétérogènes. Aussi, dans ces mêmes formations, les forages sont peu profonds pour capter les aquifères plus profonds. Afin de baisser ce taux d'échec, nous proposons d'utiliser la tomographie de résistivité électrique (2D). C'est une technique qui permet d'observer les variations verticales et latérales.

Mots-clés : sondage électrique, traîné électrique, aquifère de socle, aquifères des formations sédimentaires, implantation de forage.

INTRODUCTION

The importance of water for life and as component of the global ecosystem is well known. The history of water and that of men are closely linked. For this reason, the search for water points has long mobilized the energies and the first civilizations were born along the course of the great feeding rivers (Mangoua et al., 2019; Ehousou et al., 2018; Youan Ta et al., 2015; Bensaoula et al., 2012). Also, this resource that meets the basic needs of man is an important economic potential particularly to generate and maintain prosperity through certain activities such as agriculture, fishing, energy production, industry, transportation and tourism. However, freshwater, which accounts for only 2.5% of the global water volume (97.5% for salt water), is unevenly distributed over the Earth's surface. This resource is becoming scarce in many parts of the world, particularly in sub-Saharan Africa. In addition, the demand for drinking water to meet the water needs of the population is growing due to population grow. Unfortunately, all this is happening in a climate context where precipitation, the main source of fresh water from the atmosphere,

exhibits a strong spatial and temporal variability with a declining trend over a large part of Africa (Karambiri et al., 2011; Paturel et al., 2010).

Groundwater is the major water resource in rural areas of Sub-Saharan Africa, because of the poor quality of surface water and its unavailability during in some periods due to high evapotranspiration. As the only source of safe drinking water, groundwater resources condition the food security of these populations. Nearly half of Africa's population relies on groundwater (Carter and Parker, 2009). In order to access these groundwater resources, high quality pieces of work (boreholes in general) that can last for a long time are required. These boreholes must be located in aquifers with significant storage and / or high recharge (Vries and Simmers, 2002).

Thus, in Burkina Faso over a thousand boreholes are made each year to enable rural people to have access to water. However, some regions have lower access rates than the set targets of about 80% in 2015. This is the case of the Mouhoun loop region which is one of the 5 regions with the lowest access rates in the country with 76% (Diabaté, 2013). Also, failure rates in the area are estimated at more than 30% (Diabaté, 2013). From geological point of view, this region is underlined by both basement and sedimentary rocks. In the area, borehole siting is done using one-dimensional (1D) electrical resistivity techniques such as electrical profiling and electrical sounding. In this study, we decided to analyse this approach in order to know if it is adapted to the geological context.

STUDY ZONE

The region of Mouhoun loop is located between latitudes $13^{\circ} 42$ 'N and $11^{\circ} 15'$ N and longitudes $4^{\circ} 15'$ W and $2^{\circ} 30'$ W. It is located in north-western Burkina Faso and is limited in the North and North-West by the Republic of Mali and the Northern region, while in the western, southern eastern parts it is limited by the High-Bassins region, the South-West region and the Central-West region, respectively. It covers an area of 34,145 km², which represents 12.59% of the total area of the country. It covers 6 provinces divided into 6 urban communities, 41 rural communes and 983 villages. The regional capital is Dédougou (Fig. 1).

As part of this study, the provinces of Sourou and Nayala are not taken into account since we could not have data on these communes. The study area, is therefore limited to 4 communes.

Figure 1: Location of the study area

The climate in this area is of the Sudano-Sahelian type, with a short rainy season (from June to September) and a long dry season (from October to May). The mean annual rainfall varies between 700 and 900 mm and the temperature ranges between 25 and 40°C (Soro et al., 2017).

The geology of Burkina Faso is characterized by rocks belonging to the West African craton, which has one of the lowest seismicities in the world, characterized by earthquakes with a magnitude less than 4. This craton comprises two distinct entities: the Reguibat Shield in the North, and the Leo Shield, also referred to as the Man Shield, in the South (Figure 2). These two groups are separated by sedimentary formations called the Taoudeni basin (Soro et al., 2017).

In the Leo Shield, Paleoproterozoic formations crop out in nine West African countries: Burkina Faso, Ivory Coast, Ghana, Guinea, Liberia, Mali, Niger, Senegal and Togo (Lompo, 2010). The age of the formations is not exactly known, and diverse estimates have been proposed in different studies (Kouamelan et al., 2015; Lompo, 2010; Feybesse et al., 2006). However, this shield can be subdivided into two domains: The Archean or Kenema-Man domain (Figure 2). This is characterized by two orogenic cycles: the Leonian, dated from 3500 to 2900 Ma, and the Liberian, dated from 2900 to 2600 Ma. The Baoule-Mossi domain (Fig. 2) is dominated by the Paleoproterozoic era. It was recorded in the second domain of the Eburnean orogenic cycle dated from 2400 to 1600 Ma. Regarding the sedimentary formations it is make-up of the Neoproterozoic and

Cenozoic (Continental Terminal) sediments of the Taoudeni Basin and the southeastern boundary of the northern rim of the Voltaean Basin (Tirogo, 2016). This vast Neo-Proterozoic basin of about 2 million km² which covers in major discordance the heart of the West African craton extends over 6 countries (Mali, Mauritania, Algeria, Burkina Faso, Niger and Guinea). With a thickness estimated at more than 3000 m on average, it is largely make up of limestone and sandstone. The southeastern border of the Taoudéni sedimentary basin (260 000 km²) is partially covered by surface formations of Tertiary. In the Burkina Faso part of the Taoudéni basin (45 000 km²), the geological synthesis indicates nine formations in the sedimentary zone subdivided into four groups. From the bottom to the top: (i) the Banfora group, which comprises the formation of the lower sandstones, consists of more or less coarse sandstones containing very fine past, silty with a power of about 300 m; (ii) the Cliff Group composed of Kawara-Sindou Sandstone and Fine Glauconous Sandstone (Gfg) consists of coarse (or even conglomerate) sandstone with a power of about 800 m; (iii) the Bobo Group consists of Quartz Granules, Siltstones, Argilites and Carbonates of Guena-Sourou-Koundinga, Pink Sandstones, Siltstones, Argilites and Carbonates of Samandeni-Kiébani, Siltites and Quartz Sandstones and (iv) Bandiagara group consisting of Fo-Bandiagara Sandstone (GFB), very coarse-grained conglomeratic sandstone, with a thickness of about 50 m, more widespread in Mali. The geology of the region extends over the crystalline basement in the east and the sedimentary basin in the west.

METHODS

Identification of the parameters of the analysis

The parameters of the analysis were divided into two groups according to the sources of information. These are the geophysical parameters and the hydrogeological parameters.

Geophysical parameters

Geophysical parameters were identified from data collected by a drilling company. These data were obtained by using electrical resistivity profiling and electrical resistivity techniques. The basis and principles of these two techniques can be found in several documents (Samouëlian et al., 2005; Dahlin and Zhou, 2004). The purpose of electrical resistivity is to determine the resistivity distribution of the sounding soil volume. Artificially generated electric currents are provided to the soil and the resulting potential differences are measured (Samouëlian et al., 2005).

The data acquired from these two techniques were analyzed and interpreted. The IPI2WIN software, used for this purpose, generated curves that were analysed like in several works (Coulibaly et al., 2019; Kouakou et al., 2016; Kouassi et al., 2012; Dieng et al., 2004). This was to determine the forms of anomalies, the types of anomalies and types of sounding

The data relate to 128 boreholes among which 83 are located in the basement area and 45 in the sedimentary environment (Fig. 2).

Figure 2: Location of the different boreholes

Hydrogeological parameters

The hydrogeological data such as the status, yield, depth and the well logging of the boreholes were obtained from the technical data sheets of the boreholes. The status of the borehole refers to whether the borehole is positive or negative. Thus, all the boreholes whose yield rates obtained after development (blowing) are greater than or equal to 0.4 m^3/h are declared to be positive (successful), otherwise it is negative (Diabaté, 2013). The depth is the one that has been drilled. Finally, the well logging allows to know the type of geological formation in which the drilling was carried out. The geological data were collected for borehole used for the identification of geophysical parameters.

Parameter analysis method

Statistical analyses were done for all the parameters mentioned above. In order to achieve this, geophysical parameters were correlated according to the geological formations, yield, depth of the borehole on the one hand in order to identify the various parameters governing productivity, and other hand, results obtained in the basement aquifer were

compared with those obtained in the sedimentary one in order to generate parameters inducing high yield (greater than $6 \text{ m}^3/\text{h}$) (Diabaté, 2013).

The statistical methods used are: the arithmetic mean, the frequency and the standard deviation (1).

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{p} n_i \left(X_i - \overline{X} \right)^2}$$
(1)

where σ is the standard deviation, *N* is the total number, n_i is the number of value X_i and \overline{X} representing the average value.

RESULTS

Geological formations and status of the borehole

In the part of the crystalline basement, 65% and 35% of the boreholes were sate in granite and in shale, respectively. 56 boreholes out of 83, representing 67.5%, were positive while 32.5% were negative.

With regard to the sedimentary part, it consists mainly of sandstone with a recurrence of more than 91%. The so called Continental Terminal is found in some places representing 9% of the total area covered by the sedimentary basin. The technical data sheets of the boreholes did not allow us to differentiate the different types of sandstone (pink or white). This study was conducted on a total sample of 45 boreholes including 27 positive and 18 negative which represents a failure rate of about 40% in this part.

Geophysical parameters and status of boreholes

Forms of anomalies

After the analysis of the different electrical profiling curves, it was found that there were 7 forms of anomalies in the two geological formations (basement and sedimentary zones). The most observed form is the V-form anomaly with the frequency of 27% in crystalline basement terrain (granite and shale) and 23% in sedimentary zone (sandstone and continental terminal). This form is followed by the U-form anomalies with 22% and the K-form with 18% in the basement area and in the sedimentary zone, respectively. The anomaly forms with the lowest recurrences are the W-form and C-form in the basement area with a rate of 9% each and the C-form and the H-form in sedimentary environment with 4% each.

Regarding drilling success rates, K-form and M-form have the highest rates, 78.6% and 87.5%, respectively, in the basement area. The K-form also enable to have a success rate of 75% in sedimentary environment. In this same medium, C-form and W-form deserve special attention because they have the same success rate like the K-form.

Looking at table 1, which shows the distribution of the shapes of the anomalies according to geological formations and the status of boreholes, we find that the size of the different samples did not allow some analyses. However, several remarks already be made. At the level of the granites the M-, K- and U-forms enable a success rates higher than 75%. On shale, drilling on M-form and C-form have all been successful. Regarding the sandstone, the rates of success oscillate around 60%. The W-form is the one that offers the success rate more than 75%. On the other hand, 62% of the drillings on the U-form failed. All the 4 boreholes drilled in the continental terminal were successful.

 Table 1: Distribution of anomalous forms according to geological formations and the status of boreholes

Coological formations		parameters		Form of the anomalies							
Geological formations		parameters		U	V	W	Μ	K	VS	Н	Total
Basement	Granite	Status	Positive	10	9	6	5	8	0	2	40
			Negative	3	4	2	1	2	1	1	14
		Total		13	13	8	6	10	1	3	54
		Rate of	success (%)	77	69	75	83	80	0	67	74
		Recurre	ence (%)	24	24	15	11	19	2	6	100
	Schist	Status	Positive	2	3	4	2	2	3	0	16
			Negative	3	6	3	0	1	0	0	13
		Total		5	9	7	2	3	3	0	29
		Rate of	success (%)	40	33	57	100	67	100	-	55
		Recurre	ence (%)	17	31	24	7	10	10	0	100
Sedimentary	Sandstone	Status	Positive	3	5	3	2	4	2	4	23
			Negative	5	4	1	2	3	1	2	18
		Total	-	8	9	4	4	7	3	6	41
		Rate of	success (%)	38	56	75	50	57	67	67	56
		Recurre	ence (%)	20	22	10	10	17	7	15	100
	continental terminal	Status	Positive	0	1	0	0	2	0	1	4
			Negative	0	0	0	0	0	0	0	0
		Total	-	0	1	0	0	0	0	1	4
		Rate of	success (%)	-	100	-	-	100	-	100	100
		Recurre	ence (%)	0	25	0	0	50	0	25	100

Types of anomalies

In this study, 3 types of anomalies were identified (CCE, CCL and PC). In the basement terrain, the PC type is the most recurrent with a rate of 71.4%. The CCE and CCL types have substantially equal proportions, 28.92% and 27.71%, respectively. The one with the best borehole success rate (78.3%) is CCL. PC is the anomaly type showing the lowest success rate of 61.1%.

In the sedimentary zone, we notice that the three types of anomalies have roughly the same recurrence rates: 35.56% for CCL, 33.33% for CCE and 31.11% for PC. The recurrence of the other two is 33.33% for the CCE type and 31.11% for the PC type. In

this geological terrain, the PC type has the best success rate (71.40%), while the lowest is obtained with the CEC type (60%).

With regard to table 2, we find in the basement area that the CCL type has the best success rate (83%) in granite terrain. However, the CEC type with success rate of 67% is the most productive on shale. In sedimentary environment, on sandstone, all types of anomalies are below a success rate of 70%. On the continental terminal, all the boreholes were positive (successful).

Caalaa	Geological formations		ettings	Туре	Tatal		
Geolog	ical formations	3	ettings	CEC	CCL	PC	- Total
Basement	Granite	Status	Positive	11	15	14	40
			Negative	5	3	6	14
		Total		16	18	20	54
		Rate of su	ccess (%)	69	83	70	74
		Recurrence	ce (%)	30	33	37	100
	Schist	Status	Positive	6	3	7	16
			Negative	3	2	8	13
		Total	-	9	5	15	29
		Rate of su	ccess (%)	67	60	47	55
		Recurrence	ce (%)	31	17	52	100
Sedimentary	Sandstone	Status	Positive	8	6	9	23
			Negative	6	7	5	18
		Total		14	13	14	41
		Rate of success (%) Recurrence (%)		57	46	64	56
				34	32	34	100
	Continental terminal	Status	Positive	1	3	0	4
			Negative	0	0	0	0
		Total	e	1	3	0	4
		Rate of su	ccess (%)	100	100	-	100
		Recurrence (%)		25	75	0	100

Table 2: Distribution of anomaly types	according to geological formations and the
status of boreholes	

Types of electrical sounding

There are five types of electrical soundings in basement formations (Q, K, A, H and KH) and four types of sounding in sedimentary formations (Q, K, A and H). In the basement terrain, the H type is the one having the highest recurrence of nearly 45%. It is followed by type A(28%) and types Q, K and KH with a recurrence of 13%, 10 % and 10%, respectively. With regard to the sedimentary zone, type H is also the most observed with an occurrence of 45 %. It is followed by types A (24%), K (18%) and Q (13%).

When looking at the distribution according to different geological formations, we notice that in the granite zone of basement terrain of the study area, the type with the most successful rate is H with 20 positive boreholes from the 24 boreholes that were made, representing 83% (Table 3). It is followed by types A (12 positive boreholes out of 16) and KH (3 positive out of 4), representing a success rate of 75% for each type (Table 3). The forms (shapes) having low success rates are Q with 57% (4 positive boreholes out of

7) and K with 75% (1 positive borehole out of 3) (Table 3). On the shale, types A and H have the best success rates with 71% (5 positive boreholes out of 7) and 54% (7 positive boreholes out of 13) (Table 3). They are followed by type Q with a success rate of 50% (2 positive boreholes out of 4) and type K with 40% (2 positive boreholes out 5) (Table 3).

With regard to sedimentary rocks, in sandstone the highest success rate is obtained with type A with a rate of 73% (8 positive boreholes out of 11). The other types indicate the following success rate: 67% for K (4 positive boreholes out of 6), 47% H (9 positive boreholes out of 19) and 40% for Q (2 positive boreholes out of 5) (Table 3). In the continental terminal, all the types of electrical sounding resulted in positive boreholes, since all the 4 boreholes were positive (successful) (Table 3).

 Table 3: Distribution of survey types according to geological formations and the status of boreholes

Geological formations		Parameters		Type of electrical sounding					T . 4.1
Geolog	ical formations	rarameters		Q	Q K AT		H KH		- Total
Basement	Granite	Status	Positive	4	1	12	20	3	40
			Negative	3	2	4	4	1	14
		Total	Ū.	7	3	16	24	4	54
		Rate of	success (%)	57	33	75	83	75	74
		Recurre	nce (%)	13	6	30	44	7	100
	Schist	Status	Positive	2	2	5	7	0	16
			Negative	2	3	2	6	0	13
		Total		4	5	7	13	0	29
		Rate of	success (%)	50	40	71	54	-	55
		Recurre	nce (%)	14	17	24	45	0	100
Sedimentary	Sandstone	Status	Positive	2	4	8	9	0	23
			Negative	3	2	3	10	0	18
		Total	Ū.	5	6	11	19	0	41
		Rate of success (%)		40	67	73	47	-	56
		Recurre	nce (%)	12	15	27	46	0	100
	Continental terminal	Status	Positive	1	2	0	1	0	3
			Negative	0	0	0	0	0	0
		Total	Ū.	1	2	0	1	0	4
		Rate of	success (%)	100	100	-	100	-	100
		Recurrence (%)		25	50	0	25	0	100

Hydrogeological parameters and status of boreholes

Boreholes depths

The boreholes drilled in the basement terrain and those in the sedimentary zones have almost the same average depth, since the average depth is 71 m for the basement terrain and 69 m in the sedimentary zone.

In the granites, the depth of the positive boreholes ranges from 49.5 m to 106 m. The average depth is 69.3 m with a standard deviation of 15.8 m. Negative boreholes were on average deep with an average depth of 83.9 m and a standard deviation of 7.1 m.

With concern to the shale, positive boreholes, with an average depth of 66.0 m and a standard deviation of 14.34 m, are shallower than those in granites. Negative boreholes are on average the deepest of the basement terrain with an average depth of 88.8 m and a standard deviation of 17.8 m.

Concerning the sedimentary basin, the positive boreholes drilled in the sandstone have an average depth of 61.7 m and a standard deviation of 14.4 m. In this geological formation, the negative boreholes are on average the deepest of the study area with a depth 89.0 m and a standard deviation of 23.5 m. In the continental terminal, the boreholes have an average depth of 71.2 with a standard deviation of 9.4 m.

Geological formations		Status of		Standard		
		boreholes	Minimum Average		Maximum	deviation (m)
Basement	Granite	Positive	49.5	69.3	106.0	15.8
		Negative	72.9	83.9	90.6	7.1
	Schist	Positive	42.5	66.0	101.6	14.3
		Negative	50.4	88.8	100.5	17.8
Sedimentary	Sandstone	Positive	46	61.7	111.5	14.4
		Negative	39.2	89.0	112.58	23.5
	Continental	Positive	57.5	71.2	78.81	9.4
	terminal	Negative	-	-	-	-

Table 4: Drill depth statistics for different geological formations

Borehole yield

The study regarding the yield was conducted on boreholes with a yield greater than 0.4 $m^3/\,h.$ The yield ranges from 0.5 to 29.0 $m^3/\,h.$

In the basement terrain, average yield are 5.7 $m^3/\ h$ and 4.7 $m^3/\ h$ in granites and shale, respectively. They are more constant than those of the sedimentary basin as their deviations are lower.

The yields in the sedimentary basin are the highest of the study area. Indeed, in sandstone, the average yield is 10.1 m³/ h with a standard deviation of 7.7 m³/ h. In the continental terminal, the yield is on average 8.4 m³/h with a standard deviation of 6.6 m³/ h.

 Table 5: Borehole yield statistics for different geological formations

Geological formations			Yield (m3/h)				
		Minimum	Average	Maximum	deviation (m)		
Basement	Granite	0.5	5.7	16.5	5.1		
	Schist	0.6	4.7	14.0	3.8		
Sedimentary	Sandstone	2.1	10.1	29.0	7.7		
	Continental terminal	2.6	8.4	18.1	6.6		

DISCUSSION

The forms of anomalies, the types of anomalies and types of surveys identified in the crystalline basement were also observed in other studies in Burkina Faso (Dieng et al., 2004) and in the West African sub-region, especially in Ivory Coast (Coulibaly et al., 2019). Also, these anomaly signatures were observed in the sedimentary zone of this study. This findings are the opposites of the model conceptual indicating that the sedimentary formations have a porous porosity allowing the storage and the yield of groundwater in this porous medium (Soro, 2017). However, this observation can be explained by the nature of the sedimentary formations encountered in the area which are in majority composed of sandstone (more than 90%). In fact, these are indurated and consolidated sedimentary rocks, sometimes metamorphosed, which unconformably overlies the basement rocks (Ouédraogo, 1994). Thus, in these sedimentary formations, several studies have highlighted discontinuities (fractures and lineaments) that are basically found in crystalline rocks (Koussoube, 2010; Ouédraogo, 1994; Tirogo, 2016).

Concerning the failure rates of the boreholes (32.5% in the basement area and 40% in the sedimentary zone), these are slightly better than those observed at the national level of the country (Burkina Faso) in the basement (30-40%) (Soro et al., 2017) and in Benin (40%) (Alle et al., 2018). As the sedimentary zone consists of indurated sandstone, the productivity of the aquifers in this formation is low (Ouédraogo, 1994). They owe their aquifer properties from secondary porosity. Water is stored and flows into joints, cracks and fractures (Maréchal et al., 2004). The heterogeneity of the media is the main cause of borehole failure without however omitting the fact that poor borehole drilling and especially the poor borehole siting contribute to this failure. Indeed, borehole siting is very often carried out by geophysical prospecting based on the measurement of resistivity using direct current electrical methods (Samouëlian et al., 2005). In Burkina Faso, the common practice is to implement one or more electrical profiles of apparent resistivity of a single line length perpendicular to the major direction of lineaments identified on satellite images. The presence, along the apparent resistivity profile, of more conductive deflections than the rest of the adjacent values is interpreted by practitioners as being the mark of the presence of a wet fracture (the target). In a second step, in order to quantify the thicknesses of the different layers above the target, the practitioner implements one or more electrical soundings to the right of the detected deflections on the profile. According to the results obtained by this electrical sounding, the prospector then sits boreholes in priority order by favouring the sounding points which, once interpreted with a hypothesis of tabularity, present the most important thickness of alteration. Zones of very low resistivity are avoided (but not always) because considered too clayey. Given the high failure rate in the area and even in Burkina Faso, several works, for instance the one by (Alle et al., 2018), highlighted the limitations of this approach and suggests using twodimensional (2D) electrical resistivity tomography (ERT). This enable to better appreciate the lateral extension of the structures, contrary to the techniques of electrical profiling and electrical sounding (Alle et al., 2018; Soro et al., 2017; Dahlin and Zhou, 2004). Moreover, this high rate of borehole failure observed in the sedimentary can also

be due to the shallow depths of these boreholes. Indeed, as indicated (Ouédraogo, 1994), the aquifers in the zone are often quite deep.

In addition, the four boreholes drilled in the continental terminal are all successful, testifying s the continuity of the geological environment. It is a porous porosity that is often observed in this type of geological formation.

CONCLUSIONS

At the end of this study, we find that the use of 1D electrical resistivity techniques (electric electrical profiling and electrical sounding) in borehole siting results in borehole failure rate of 32.5% in the basement area and 45% in the sedimentary zone. Therefore, this borehole siting approach seems to be inappropriate in the area due to the complexity of the geological formations. Indeed, the sandstones behave like discontinuous environments.

An alternative to both electrical profiling and sounding would be the ERT which takes into account the vertical and lateral variations of the resistivity anomalies.

REFERENCES

- ALLE I.C., DESCLOITRES M., VOUILLAMOZ J.-M., YALO N., LAWSON F.M.A., ADIHOU A.C., (2018). Why 1D electrical resistivity techniques can result in inaccurate siting of boreholes in hard rock aquifers and why electrical resistivity tomography must be preferred: the example of Benin, West Africa. Journal of African Earth Sciences, Vol. 139, pp. 341–353. https://doi.org/10.1016/j.jafrearsci.2017.12.007
- BENSAOULA F., DERNI I., ADJIM M. (2012) Trente années de prospection et de mobilisation des ressources en eau souterraine, par forages, dans la Wilaya de Tlemcen. Larhyss Journal, N°10, pp. 91-99.
- CARTER R.C., PARKER A., (2009). Climate change, population trends and groundwater in Africa. Hydrological Sciences Journal, Vol. 54, pp. 676–689. https://doi.org/10.1623/hysj.54.4.676
- COULIBALY A., LASME O.Z. DE, YOUAN T.M., SORO G., LASM T., SORO N., (2019). Multidisciplinary approach for a basement aquifer location in Tanda Region, Côte d'Ivoire. Journal of Water Resource and Protection, Vol. 11, pp. 1111–1128. https://doi.org/10.4236/jwarp.2019.119065
- DAHLIN T., ZHOU B., (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, Vol. 52, pp. 379–398. https://doi.org/10.1111/j.1365-2478.2004.00423.x

- DIABATÉ A.-L., (2013). Caractérisation des paramètres géophysiques en relation avec la productivité de la cible hydrogéologique dans la boucle du Mouhoun au Burkina Faso. Mémoire Master, Institut International d'Ingénierie de l'Eau et de l'Environnement, Burkina Faso, 97p.
- DIENG B., DE HEUSCH KOUASSI A., BAKYONO B.A., (2004). Optimisation de l'implantation géophysique des forages en zone de socle au Nord du Burkina Faso. Sud Sciences Technologie, Vol. 12, pp. 21-30.
- EHOUSOU K.M., KOUASSI K.M., KAMAGATE B. (2018). Caractérisation hydrodynamique des aquifères fissurés de la région du Bélier (Centre de la Côte d'Ivoire). Larhyss Journal, N°36, pp. 119-143.
- FEYBESSE J.-L., BILLA M., GUERROT C., DUGUEY E., LESCUYER J.-L., MILESI J.-P., BOUCHOT V., (2006). The paleoproterozoic ghanaian province: Geodynamic model and ore controls, including regional stress modeling. Precambrian Research, Vol. 149, pp. 149–196. https://doi.org/10.1016/j.precamres.2006.06.003
- KARAMBIRI H., GARCÍA GALIANO S.G., GIRALDO J.D., YACOUBA H., IBRAHIM B., BARBIER B., POLCHER J., (2011). Assessing the impact of climate variability and climate change on runoff in West Africa: the case of Senegal and Nakambe River basins. Atmospheric Science Letters, Vol. 12, pp. 109–115.
- KOUAMELAN A.N., DJRO S.C., ALLIALY M.E., PAQUETTE J.-L., PEUCAT J.-J., (2015). The oldest rock of Ivory Coast. Journal of African Earth Sciences, Vol. 103, pp. 65–70. https://doi.org/10.1016/j.jafrearsci.2014.12.004
- KOUASSI A.M., AHOUSSI K.E., YAO K.A., OUREGA W., YAO K.S.B., BIEMI J., (2012). Analyse de la productivité des aquifères fissurés de la région du N'zi-Comoé (Centre-Est de la Côte d'Ivoire). Larhyss Journal, N°10, pp. 57-74.
- KOUAKOU E.G.K., SOMBO A.P., BIE G.R., AKA E. KOUAME L.N. (2016). Etude comparative de résultats de sondages électriques et des coupes lithostratigraphiques de forages en région de socle (Nord de la Côte d'Ivoire). Larhyss Journal, N°25, pp. 101-119.
- KOUSSOUBE Y., (2010). Hydrogéologie des séries sédimentaires de la dépression piézométrique du Gondo (bassin du Sourou): Burkina Faso/Mali. Thèse de doctorat unique, Université Pierre et Marie Curie, France, 264p.
- LOMPO M., (2010). Paleoproterozoic structural evolution of the Man-Leo Shield (West Africa). Key structures for vertical to transcurrent tectonics. Journal of African Earth Sciences, Vol. 58, pp. 19–36. https://doi.org/10.1016/j.jafrearsci.2010.01.005
- MANGOUA M.J., YAO A.B., DOUAGUI G.A., KOUASSI K.A., GOULA B.T.A., BIEMI J. (2019). Evaluation des potentialités en eau souterraine des aquifères fissures dans le bassin versant du Bandama (Côte d'Ivoire). Larhyss Journal, N°37, pp. 53-74.

- MARECHAL J.C., DEWANDEL B., SUBRAHMANYAM K., (2004). Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resources Research 40, W11508. https://doi.org/10.1029/2004WR003137
- OUÉDRAOGO I., (1994). Géologie et hydrogéologie des formations sédimentaires de la boucle du Mouhoun (Burkina Faso). Thèse de 3^{ème} cycle, Université Cheikh Anta Diop, Senegal, 116p.
- PATUREL J.E., BOUBACAR I., L'AOUR A., MAHÉ G., (2010). Analyses of pluviometric grids and main features of the changes occurring in West and Central Africa during the 20th century. Hydrological Sciences Journal, Vol. 55, pp. 1281– 1288. https://doi.org/10.1080/02626667.2010.527846
- SAMOUËLIAN A., COUSIN I., TABBAGH A., BRUAND A., RICHARD G., (2005). Electrical resistivity survey in soil science: a review. Soil and Tillage Research, Vol. 83, pp. 173–193. https://doi.org/10.1016/j.still.2004.10.004
- SORO D.D., (2017). Caractérisation et modélisation hydrogéologique d'un aquifère en milieu de socle fracturé: cas du site expérimental de Sanon (région du plateau central au Burkina Faso). Thèse de doctorat unique, Université Pierre et Marie Curie, France, 237p.
- SORO D.D., KOÏTA M., BIAOU C.A., OUTOUMBE E., VOUILLAMOZ J.-M., YACOUBA H., GUERIN R., (2017). Geophysical demonstration of the absence of correlation between lineaments and hydrogeologically usefull fractures: Case study of the Sanon hard rock aquifer (central northern Burkina Faso). Journal of African Earth Sciences, Vol. 129, pp. 842–852. https://doi.org/10.1016/j.jafrearsci.2017.02.025
- TIROGO J.Y., (2016). Etude du fonctionnement hydrodynamique de l'aquifère sédimentaire du bassin du Kou au sud-ouest du Burkina Faso. Thèse de doctorat unique, Université Pierre et Marie Curie, France, 204p.
- VRIES J.J. DE, SIMMERS I., (2002). Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal, Vol. 10, pp. 5–17. https://doi.org/10.1007/s10040-001-0171-7
- YOUAN TA M., YAO K.A.F., BAKA D., DE LASME Z. O., LASM T., ADJA M.G., KOUAKOU S., ONETIE Z.O., JOURDA J.P.R., BIEMI J. (2015). Cartographie des zones potentielles a l'implantation des forages a gros débits en milieu fissure par analyse multicritère cas du département d'Oumé (Centre-Ouest de la Côte d'Ivoire). Larhyss Journal, N°23, pp. 155-181.