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ABSTRACT 

Using the rational relationship, established by the authors in a previous study that links 

the properties of critical flow and normal flows, the present investigation is related to 

the critical state of the flow in a rectangular-shaped channel. The main objective is to 

observe the behaviour of this type of flow under the variation of some flow parameters 

such as the slope S0 and the width b of the channel. The relation which governs the 

critical flow in this form of channel is an implicit relationship for the relative critical 

depth c = yc/b where yc is the critical flow depth. It consists of four dimensionless terms 

which are the relative critical depth defined above, the relative roughness /b where  is 
the absolute roughness, the channel slope S0, and the shear Reynolds number R*

nc 

characterizing the flow in a very wide rectangular-shaped channel. To simplify the 

calculation, the example of the smooth rectangular-shaped channel (→0) of width b = 

1m is first considered to observe the influence of the slope S0. It was observed that, for 

the chosen channel, the slope S0 = 0.0020949472 generates a single critical state of the 

flow. All the slopes S0 greater than 0.0020949472 generate two critical flow states 

corresponding to two different flow rates. Finally, slopes less than 0.0020949472 do not 

generate any critical state of the flow in the channel. On the other hand, it has also been 

demonstrated that for a given slope S0, there is a particular width b1 of the channel 

which generates a single critical state of the flow. Widths b less than b1 do not generate 

any critical state in the channel, while widths b greater than b1 engender two critical 

states of the flow. 

http://creativecommons.org/licenses/by/4.0
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RESUME 

En utilisant la relation rationnelle, établie par les auteurs dans une étude précédente qui 

lie les propriétés des écoulements critique et normal, la présente enquête est liée à l'état 

critique de l'écoulement dans un canal de forme rectangulaire. L'objectif principal est 

d'observer le comportement de ce type d'écoulement sous la variation de certains 

paramètres d'écoulement tels que la pente S0 et la largeur b du canal. La relation qui 

régit l'écoulement critique dans cette forme de canal est une relation implicite vis-à-vis 

de la profondeur critique relative c = yc/b où yc est la profondeur critique d'écoulement. 

La relation obtenue se compose de quatre termes sans dimension qui sont la profondeur 

critique relative définie ci-dessus, la rugosité relative /b où  est la rugosité absolue, la 

pente du canal S0 et le nombre de Reynolds de cisaillement R*nc caractérisant 

l'écoulement dans un très large canal de forme rectangulaire. Pour simplifier le calcul, 

l'exemple du canal lisse rectangulaire (→0) de largeur b = 1m est d'abord considéré 

pour observer l'influence de la pente S0. Il a été observé que, pour le canal choisi, la 

pente S0 = 0,0020949472 génère un seul état critique de l'écoulement. Toutes les pentes 

S0 supérieures à 0,0020949472 génèrent deux états d'écoulement critiques correspondant 

à deux débits différents. Enfin, les pentes inférieures à 0,0020949472 ne génèrent aucun 

état critique de l'écoulement dans le canal. D'autre part, il a également été démontré que 

pour une pente S0 donnée, il existe une largeur b1 particulière du canal qui génère un 

seul état critique de l'écoulement. Les largeurs b inférieures à b1 ne génèrent aucun état 

critique dans le canal, tandis que les largeurs b supérieures à b1 engendrent deux états 

critiques de l'écoulement. 

Mots clés : Ecoulement critique, pente de canal, largeur de canal, canal rectangulaire, 

profondeur critique relative. 

INTRODUCTION 

The rectangular-shaped channel is one of the most widely used structures in practice 

due to its simple geometric shape and easy implementation. It is an open-channel with a 

rectangular cross-section. By keeping constant the water area A of a rectangular-shaped 

channel of width b, it is possible to minimize the wetted perimeter P. This is done by 

setting the derivative of the wetted perimeter with respect to the flow depth y equal to 

zero, i.e. dP/dy = 0 (Chow, 1959). The calculations show that the final result is y = b / 2. 

This means that the maximum flow efficiency is achieved when the flow depth y is 

equal to one half the channel width b. This corresponds to an optimal section in which a 

semi-circle is perfectly inscribed.  
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In practice, the flow in an open-channel is non-uniform, i.e. the parameters of the flow 

such as velocity and depth vary along the flow path (Chaudhry, 2008). However, the 

open- channels are designed under the assumption of a uniform flow for which flow 

parameters, such as the depth called normal depth, are constant in space and time. In 

general, there are three main problems encountered in the study of open-channels flow 

namely, discharge calculation, flow depth computation, and the sizing of the channel. 

To do this, the so-called uniform flow equations are used such as Manning's relation 

(Manning, 1891) which remains the most popular today. Applying uniform flow 

relationships to solve the flow depth problem often leads to an implicit equation. This is 

also the case with Manning's formula. For this reason, research workers proposed 

graphical solutions (Chow, 1959) or approximate analytical solutions (Vatankha and 

Easa, 2011; Shang et al., 2019). The proposed approximate formulas are very precise 

but unfortunately, they cannot be applied in their current form. The main reason is that 

these formulas contain Manning's n resistance coefficient, knowing that the latter itself 

depends on the flow depth sought. Indeed, it has been demonstrated in the distant and 

recent past that Manning's coefficient n strongly depends on the flow depth (Camp, 

1946; Achour and Bedjaoui, 2006; Achour, 2014). 

In open-channels, also occurs a particular flow which is the critical flow of depth 

denoted yc. It is a particular depth because it meets the criticality criterion resulting from 

the equality F = 1, where F is the Froude number (Subramanya, 2009; Chaudhry, 2008; 

Moglen, 2015). With the exception of the criticality criterion, the literature is not 

provided with data and research on critical flow. Although it is particular, the critical 

depth is a uniform depth that should depend on the flow characteristics as well as the 

geometry of the channel. These characteristics are, in particular, the slope S0 of the 

channel, the absolute roughness  which characterizes the state of the internal wall of 

the channel, and the kinematic viscosity  of the flowing liquid.  

In a recent study, Achour and Amara (2020) investigated the change in critical depth in 

a partially filled smooth conduit taken as an example, based on both the dimensionally 

consistent uniform flow relationship (Achour and Bedjaoui, 2006) and the criticality 

criterion. It emerges from this study that, for a given conduit, there are two critical states 

of the flow for two different flow rates, depending on the slope S0 of the conduit. One 

occurs at shallow depths, the other occurs at greater depths. Besides, some slopes do not 

generate a critical state of the flow, while others generate a single critical state.  

The main objective of the present study is to know whether in the rectangular-shaped 

channel the same observations can be made. 

GEOMETRIC PROPERTIES 

For a rectangular-shaped channel, the geometric properties are as follows: 

A by=           (1) 
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Where A is the water area, b is the width of the channel, and y is the flow depth. Eq.(1) 

can be rewritten as: 

2A b =
          (2) 

/y b =  is the relative depth or the aspect ratio. 

T b=           (3) 

Where T is the top width at the surface water. 

2P b y= +
          (4) 

Or: 

(1 2 )P b = +
          (5) 

Where P is the wetted perimeter. 

/hR A P=
          (6) 

Where Rh is the hydraulic radius. 

Taking into account Eqs.(2) and (5), Eq. (6) becomes: 

2

(1 2 ) (1 2 )
h

b b
R

b

 

 
= =

+ +
 

Or: 

1( 2)
h

b
R

−
=

+
         (7) 

Eq.(7) can be written as: 

( )
h

b
R

 
=           (8) 

Where: 

1( ) ( 2)  −= +
          (9) 

The shape of the channel section can be classified between very wide and very narrow 

through a shape factor introduced by Vedernikov in the years 1945, and reported by 

Chow (1959).The shape factor of a channel section is as: 
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1 h
dP

R
dA

 = −         (10) 

Where dP/dA is the derivative of the wetted perimeter P with respect to the water area 

A. From Eqs.(1) and (4), one may write dA = bdy and dP = 2dy, resulting in what 

follows: 

2dP

dA b
=         (11) 

Taking into account Eqs.(7) and (11), Eq.(10) becomes: 

1

2
1

( 2)


−
= −

+
        (12) 

For the case of a very narrow rectangular-shaped channel, one may write b→0 or         

1− →0 corresponding to ( ) 2  = . Thus, Eqs.(8) and (12) are reduced respectively to: 

2
h

b
R =         (13) 

0 =         (14) 

Thus, for the very narrow rectangular-shaped channel, the hydraulic radius is equal to 

one half the width of the channel corresponding to a shape factor equal to zero. For the 

case of a very wide rectangular channel, corresponding to b →  or 1− → , Eq.(12) 

gives: 

1 =         (15) 

AVAILABLE FUNDAMENTAL RELATIONSHIPS 

In their recent study, Achour and Amara (2020) highlighted the fundamental 

relationship that links the characteristics of critical and normal flows in a channel or 

conduit of any shape. This is expressed as: 

3/2 3/2

01/2 *

,

10.04
4 2 log

14.8

c n

n h nc

A A
S

P R RT

 
= − +  

 

                      (16) 

3

, 0* 32 2
h ngR S

R


=         (17) 

Where A is the water area, P is the wetted perimeter, T is the top width at the water 

surface, Rh is the hydraulic radius, S0 is the slope of the channel,  is the kinematic 
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viscosity of the flowing liquid,   is the absolute roughness, and R* is the shear 

Reynolds number. 

By replacing the subscript "n" by the subscript "c" in Eq.(16), Achour et Amara (2020) 

show that: 

0 *

,

10.04
4 2 log

14.8

c

h cc

P
S

R RT

 
= − +  

 
        (18) 

This is the general relationship which governs the critical flow in a channel or conduit 

of a given shape. 

SIMULTANEOUS VARIATION OF THE CRITICAL AND NORMAL DEPTHS 

FOR A GIVEN RECTANGULAR-SHAPED CANAL 

Applying Eq.(16) to the rectangular-shaped channel, results in: 

3 3/2 3 3/2
1

01/2 1/2 *

/ 10.04
4 2 log ( 2)

(1 2 ) 14.8

c n
n

n

b b b
S

b Rb

  




− 
= − + + +    

Or, after some simplifications: 

3/2
3/2 1

01/2 *

/ 10.04
4 2 log ( 2)

(1 2 ) 14.8

n
c n

n

b
S

R

 
 



− 
= − + + +  

        (19) 

According to Eq.(17), the shear Reynolds number R* is expressed as : 

3

0* 1 3/232 2 ( 2)n

gb S
R 



− −= +         (20) 

On the other hand, for the very narrow rectangular-shaped channel, one may write 

(0) 2 = , according to Eq.(9), resulting in: 

  3/2 3/2(0) 2 1/ (2 2)
− −= =

  

Consequently, according to Eq.(20), the shear Reynolds number for a very narrow 

rectangular-shaped channel can be written as: 

3

0* 16nc

gb S
R


=         (21) 

The subscript « nc » denotes the very narrow rectangular-shaped channel. Thus, Eq.(20) 

becomes : 
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* * 1 3/22 2 ( 2)nc nR R − −= +         (22) 

Finally, Eq.(19) is definitely written in the following form: 

3/2 1 3/2
3/2 1

01/2 *

3.549676( 2)/
4 2 log ( 2)

(1 2 ) 14.8

n n
c n

n nc

b
S

R

 
 



−
− +

= − + + 
+  

     (23) 

This is the general relationship that links the characteristics of critical and normal flows 

in a rectangular-shaped channel, and contains all the parameters that influence the flow. 

Eq. (23) is shown in fig. 1 for a smooth rectangular-shaped channel ( 0 → ) with a 

slope S0 = 0.002 and a width b = 1m. 
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Figure 1: Variation of the relative critical depth versus the relative normal depth 

in a smooth rectangular-shaped channel according to Eq.(23). b = 1m, 

S0=0.002,  = 10-6 m2/s, Red curve: First bisector corresponding to n =c  

As can be seen in Fig. 1, all the curves take their origin in the subcritical flow zone. 

Moving along a given curve, from left to right, results from the increase of the 

discharge. There are certain curves which intersect the first bisector at two points, 

meaning that the channel can be the seat of two critical depths at different flow rates. 

However, it is worth noting that the first critical state can be observed at very shallow 

depths. This critical state of the flow does well and truly exists theoretically, but it is 

almost imperceptible in the figure. As an example, let us take the case of the strong 

slope S0 = 0.02, keeping the width of the channel at b = 1m. For this case, the 

fundamental Eq. (23) allowed plotting Fig. 2. This shows the variation of c as a 

function of n . One may thus observe that the curve intersects the first bisector, 

represented by the red curve, at a point such that: 

0.0002n c = =
,  

meaning that: 

0.0002 0.2y m mmc = =
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This is the first critical state of the flow appearing, as it was mentioned earlier, at very 

shallow depths. 
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Figure 2: 
c versus 

n for a smooth rectangular channel of a width b = 1m and a 

slope S0 = 0.02, (•) critical flow, n =c =0.0002 

The same observation can be made for a lower slope S0 of the conduit. Let us take the 

example of the slope S0 = 0.005, always keeping the width of the channel at b = 1m. The 

calculations performed using Eq. (23) are graphically represented in Fig. 3. 
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Figure 3: c versus n for a smooth rectangular-shaped channel of a width b = 1m 

and a slope S0 = 0.005, (•) critical flow, n =c =0.0022 

The curve ( )c n  , shown in blue color, intersects the first bisector, represented in red 

color, at the point: 

0.0022n c = =
,  

implying that: 

0.0022 2.2y m mmc = =
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This is a very low critical flow level, as in the previous case even if it is not of the same 

magnitude.  

One may conclude that, for a given rectangular-shaped channel, the more the slope S0 

increases, the more the two critical states move away from each other. The first critical 

state occurs at shallow depths and the second critical state is observed at greater depths. 

These critical states occurring at very shallow depths, from the order of a millimeter or 

even of a centimeter, are unlikely to persist in practice, as a small energy fluctuation 

will shift the flow into a supercritical flow regime as foreseen by Fig. 1. It is indeed 

recognized that the critical flow is unstable, even more so when the critical depths are 

very shallow. However, the value of the two relative critical depths does not depend 

only on the slope S0; it also depends on the width b of the channel. The influence of the 

width b will be observed in one of the following sections. Referring to Fig. 1, one may 

predict that there exists a particular slope S0;1 such that the curve 
c versus 

n is tangent 

to the first bisector at a single point, meaning that, for the corresponding pair of values 

(b1; S0;1), there is only one critical state of flow in the channel. This feature appears, for 

a given channel, as and well the slope S0 increases in the subcritical zone until the curve 

becomes tangent to the first bisector at a single point. The following slope, slightly 

above S0;1, will generate on the first bisector two points of intersection close to each 

other. By increasing the slope S0 even more, these two points will move away from each 

other along the first bisector. 

Fig.4 illustrates the case of a single critical flow state in a smooth rectangular-shaped 

channel of a width b = b1 = 1m and a slope S0 = S0;1 =0.0020949472 which generate the 

relative critical depth 0.14815n c = = . 
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Figure 4: c versus n for a smooth rectangular-shaped channel of a width b = 1m 

and a slope S0 = 0.0020949472, (•) single critical flow state, n =c 

=0.14815 

On the other hand, in the subcritical zone indicated in Fig.1, there are curves which have 

no point of intersection with the first bisector. This means that for certain values of the 
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pair of parameters (b; S0), the channel is not the seat of any critical flow. All the slopes 

S0 less than S0;1 do not generate any critical state of the flow. This case is illustrated in 

Fig.5 for a smooth rectangular-shaped channel of a width b = 1m and a slope S0 = 0.001. 
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Figure 5: c versus n for a smooth rectangular-shaped channel of a width b = 1m 

and a slope S0 = 0.001, for which there is no critical flow state in the 

channel 

CRITICAL STATE OF FLOW 

The general relationship which governs the critical flow in a rectangular-shaped channel 

can be deduced from Eq.(23) by replacing n by c . The final result is: 

1 3/2
1/2 1

0 *

3.549676( 2)/
(1 2 ) 4 2 log ( 2)

14.8

c
c c

nc

b
S

R


 

−
− +

+ = − + + 
 

                  (24) 

*
ncR is always expressed by Eq.(21), i.e. : 

3

0* 16nc

gb S
R


=         (21) 

As it can be seen, Eq. (24) is implicit with respect to c . It is implicit but it is complete, 

containing all the parameters of the flow. Furthermore, it is presented in dimensionless 

terms. The constant 3.549676, appearing in the last term of the hand-right side of the 

equation, can be rounded off to 3.55 without affecting the calculation. Eq.(24) shows 

that the relative critical depth c depends on three dimensionless parameters namely, 

the conduit slope S0, the relative roughness /b, and the shear Reynolds number R*
nc . 
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For the smooth rectangular-shaped channel (→0), Eq.(24) allowed plotting Fig. (6), for 

the width b = 1m. It shows a clear overview of the behaviour of the flow in the 

considered channel. 
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Figure 6: Variation of the relative critical depth c versus the slope S0 for the 

smooth rectangular-shaped channel of width b =1m. (•) Smallest slope that 

generates a single critical state of the flow, i.e. S0 = 0.0020949472, ()c = 

0.1481441 

Fig. (6) reveals four zones for the flow regime (1 to 4) and two curves for the critical 

state of the flow (red and blue curves). Zone 1, which is below the red curve, is not 

clearly visible in Fig. (6). It has therefore been shown on a larger scale in Fig. (7). 

Zones 1 to 4 can be interpreted as follows: 

Zone 1: It is an area of subcritical flow. Whatever the slope S0, the flow originates in 

this zone.  

Zone 2: This is the area of supercritical flow. The flow, which was subcritical in zone 1, 

becomes critical when intersecting the red curve, and then ends in supercritical zone 2. 

Zone 3: This is the subcritical flow zone. The flow, which was supercritical in zone 2, 

becomes critical again on the blue curve then resumes its subcritical character in zone 3. 

Zone 4: It is a subcritical zone of the flow. Its peculiarity lies in the fact that the slopes 

are weak generating no critical state of the flow. In this zone, the slopes S0 are lower 

than the slope limit S0 = 0.0020949472 which generates a single critical state of the flow 

corresponding to c = 0.1481441 or yc = 0.148m. 
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Figure 7: Overview of zone 1 with the red curve as the first critical state of the flow  

INFLUENCE OF THE WIDTH b 

To observe the influence of the width b of the channel, let's use Eq. (23) along with 

Eq.(21) and apply them to the smooth channel for which  approaches zero, to simplify 

the calculations. Let us arbitrarily choose the slope S0 = 0.002 as well as the kinematic 

viscosity  = 10-6 m2/s. Once these parameters are set, vary the width b of the channel 

and calculate the relative critical depth as a function of the relative normal depth for 

each of the chosen values of the width b. 

For the smooth rectangular-shaped channel, Eq.(23) is reduced to: 

3/2 1 3/2
3/2

01/2 *

3.549676( 2)
4 2 log

(1 2 )

n n
c

n nc

S
R

 




− +
= −  

+  

        (25) 

The shear Reynolds number *
ncR is always governed by Eq.(21). 

By adopting the procedure described above, Eq. (25) allowed drawing Fig. (8)  
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Figure 8: c versus n for a smooth rectangular-shaped channel for various widths 

b and a fixed slope S0 = 0.002, according to Eq.(25) 

As can be seen in Fig.(8), the curves are very close to each other despite the wide range 

of values chosen for b. Certain curves have no point of intersection with the first 

bisector which means that, for the chosen slope, there are widths b which do not 

generate any critical state of the flow. On the other hand, there are curves that have two 

points of intersection with the first bisector which means that, for the chosen slope, 

there are widths b of the channel which generate two critical states of the flow. More so, 

from these findings, it is logical to assume that there is a curve that is tangent to the first 

bisector at a single point. In other words, there exists, for the chosen slope, a channel 

width b that generates a single critical state of the flow. Fig. (9) shows the details of 

these three configurations. 
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Figure 9: Influence of the width b of a smooth rectangular-shaped channel with 

slope S0 = 0.002 on the behaviour of the critical flow, (•) two critical 

states of flow, () single critical state of flow 



Achour B. & Amara L. / Larhyss Journal, 44 (2020), 57-72 

70 

With respect to Fig. (9), one may conclude, for the chosen slope S0 = 0.002, what 

follows: 

1. The width of the channel b = 0.25 m does not generate any critical state of the 

flow because the corresponding curve has no point of intersection with the first 

bisector corresponding to n =c. 

2. The width b = 1.189 m engender a single critical flow state of relative depth c = 

0.145 corresponding to a critical depth yc = 0.172m. This point is highlighted by 

the symbol () in Fig. (9). 

3. The width b = 2 m gives rise to two critical flow states. The first one occurs at a 

shallow depth such that c = 0.04corresponding to a critical depth yc = 0.08m. 

The second one takes place at a greater depth of relative value c = 0.385 

corresponding to a critical depth yc = 0.77m. These points are represented by the 

symbol (•) in Fig. (9). 

Using Eq. (25), it was possible to compute the pair of values (b1; So;1) which generates a 

single critical state of the flow in a smooth rectangular-shaped channel. These values are 

reported in table 1 and plotted in Fig.10 as well. 

Table 1: Values of b1 and S0;1 according to Eq.(25) 

b1 (m) S0;1 

0.25 0.0031419304 

0.35 0.0028298403 

0.5 0.0025444663 

0.75 0.0022667617 

1.00 0.0020949472 

1.50 0.0018824406 

2.00 0.0017496846 

2.50 0.0016556530 

3.00 0.0015840468 
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Figure 10: Variation of the smallest width b of a smooth rectangular-shaped 

channel generating one critical state of the flow with respect to the 

slope S0 
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Having the width b of the channel as well as the slope S0, the graph of Fig. (8) allows 

the user to know if the channel will be the seat of a single critical state of the flow, of 

two critical states or even no critical state. 

CONCLUSIONS 

The present study was able to establish the general relationship that governs the critical 

flow in a rectangular-shaped channel [Eq.(24)]. This relation is made up of four 

dimensionless terms representing the set of parameters which influence the flow. 

Although it is implicit for the relative critical depth, it is nonetheless complete and 

rational.  

Using the relationship that links the critical and normal flows parameters [Eq.(23)], it 

has been demonstrated the existence of two critical states of the flow in a rectangular-

shaped channel of both well defined slope S0 and width b, obtained for two different 

flow rates. The example of the smooth rectangular-shaped channel of width b = 1m was 

considered in order to facilitate the calculations. For this channel, it appeared that the 

slope S0;1 = 0.0020949472 represents the smallest slope S0 which generates a single 

critical state of the flow. Slopes less than S0;1 do not generate any critical state of the 

flow, while slopes greater than S0;1 give rise to two critical states of the flow. The first 

critical state appears at shallow depths, while the second is observed at greater depths. 

The more the slope S0 increases, the more the two critical states move away from each 

other. In this condition, the first critical state then occupies an extremely small sub-

critical zone where the critical depth is so shallow that it cannot perdure and maintained 

itself in practice, especially since the critical flow is unstable. This is the case, for the 

considered channel of width b = 1m, where the first critical state is of depth 2.2 mm 

achieved for the slope S0 = 0.005. In general, it has been observed that, in the case of the 

considered canal, the critical depth varies between 0 and 14.8 cm for slopes greater than 

S0;1. 

The study also aimed to observe the influence of the width b of the channel. As for the 

slope S0, there is a width b1 that generates a single critical state of the flow, for a given 

slope. All widths less than b1 do not generate any critical state of the flow. On the other 

hand, two critical states of the flow are observed when the width b of the channel is 

greater than b1. These three configurations were calculated and represented graphically 

for the slope S0 = 0.002 [Fig. (9)]. Further, a graph [Fig.(10)] was drawn showing the 

variation of the pair of values (b1; S0;1). This is a single curve separating the no critical 

state zone from the two critical states zone, valid for the smooth rectangular-shaped 

channel. When the user has the pair of values (b; S0), the graph lets know if the channel 

will be the seat of a single critical state of flow, or two critical states or no critical state 

of the flow. 
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