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ABSTRACT 

The field of rough turbulent flow occupies an important place in the practical applications 

of hydraulic engineer. It is for this reason that the present study is interested in the most 

important parameters of this flow namely the characteristic length, the average velocity, 

the Reynolds number, and the hydraulic diameter. To express these parameters, new 

theoretical considerations are developed based on the combination of Darcy-Weisbach 

and Nikuradse rational relationships. The implicit form of the equation which governs the 

characteristic length has been transformed into an explicit power law by a correlation 

procedure with a very high coefficient of determination. An exact analytical solution in 

terms of Lambert function was also developed. Thus, the characteristic length can be 

evaluated explicitly provided the flow rate, the absolute roughness, the channel bed slope 

and the aspect ratio of the wetted area are given, which is generally the case in practice. 

The explicit characteristic length equation has been judiciously used to derive the mean 

flow velocity relationship. This is in the form of that of Manning-Strickler but with 

slightly different coefficients. The interest of the new velocity model lies in the fact that 

the resistance coefficient has been determined analytically contrary to the empirical 

nature of the Manning and Strickler coefficients. The resistance coefficient is explicitly 

related to absolute roughness and gravity through a physically justified relationship. The 

last two parameters studied namely the Reynolds number and the hydraulic diameter were 

deduced from mathematical manipulations and expressed by simple and practical 

relationships which do not contain the characteristic length 

Keywords: Rough turbulent flow, Moody diagram, Manning-Strickler formula, relative 

roughness, Darcy-Weisbach friction factor, Nikuradse equation, characteristic length.  
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INTRODUCTION 

Referring to the Moody diagram (1944), one can clearly observe that the rough turbulent 

flow regime occupies a very large space, larger than that of the transition flow regime. It 

is located to the right of the diagram. In other words, this means that there is a high 

probability that the rough turbulent flow regime is encountered, more particularly in 

practice. It is for this reason that special attention should be paid to this flow regime. For 

this case, one knows better the Manning-Strickler formula, the so-called simply Manning 

formula that expresses the mean flow velocity in open channels. It is an empirical formula 

that did not originate from a theory based on physical principles. It is derived from the 

fitting of observed data and, therefore, there are limits to its use. To work out his relation, 

Manning calculated the velocity of the flow in a channel obtained from each of the seven 

empirical formulas known at his time, such as that of Du Buat (1786). Manning calculated 

the mean velocity derived from each of the formulas for a given value of the channel bed 

slope S0 and varying the hydraulic radius Rh from 0.25 m to 30 m. He obtained a series of 

average values of the velocity and thus came up with a formula that best fitted the data. 

Therefore, the formula expresses the average velocity V of the flow in a channel as a 

function of the hydraulic radius and the channel bed slope both located at the right-hand 

side of the formula. This one is written as (Chow, 1959):  

0
3/21

SR
n

V
h

=                         (1) 

Note that the right side of the formula is multiplied by a factor 1/n where n is known as 

the dimensional Manning’s roughness factor whose unit is s/m1/3. The factor 1/n is 

denoted k which is Strickler’s roughness coefficient. Due to the empirical nature of 

Manning's formula, the coefficient n, or k, is deduced from experimentation and 

observation. There is no exact method of selecting the value of these coefficients and only 

a sound experience and judgment could lead to their estimation. For beginning engineers, 

different measurements would give different values of the coefficients n and k. Manning 

pointed out that interpolations using empirical correlations that contain dimensional 

coefficients can only be done between observed data. They cannot be extended or 

extrapolated for data outside the observation range. It is the values of the slope of the 

channel and the range of observed data that limit the range of applicability of Manning's 

formula. According to Falvey (1987), Manning’s formula must be applied for S0 > 0.0007 

and further, as stated by Christensen (1984), the applicability of this formula is restricted 

to the following relative roughness range: 

01.0001.0 *             (2) 

where *= / Dh,  is the absolute roughness (m) or the average height of channel surface 

roughness, and Dh is the hydraulic diameter (m). 

According to Moody chart (1944), it can be observed that in the rough turbulent flow 

domain the relative roughness *varies between 0.0001 and 0.05, meaning that Manning's 
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formula does not apply to an extremely wide zone of the relative roughness. Due to the 

dimensional coefficient in Manning's formula and all the restrictive considerations 

mentioned above, Eq. (1) should be discarded in favour of a homogeneous relationship. 

That amounts to saying that the concern to find a more rational relationship to replace 

Manning's formula is justified and legitimate. Currently, the most efficient and accurate 

relationship is undoubtedly that of Darcy-Weisbach (1854) which is also universally 

applicable.  

According to the Darcy-Weisbach formula, the average velocity V of a channel flow or 

pipe is expressed as follows: 

f

DgS
V h02
=           (3) 

where g is the acceleration due to gravity and f is the so-called Darcy-Weisbach friction 

factor which is a dimensionless coefficient. No restrictions are known on the applicability 

of equation (3) unlike Manning's formula. It is valid in the whole domain of turbulent 

flow, more particularly in the fully rough zone, also called rough turbulent flow zone, 

which concerns the present study. 

Unlike Manning's n or Strickler's k coefficients, f is not estimated empirically. All the 

coefficients of resistance commonly used today are estimated empirically with the 

exception of the coefficient f.  

Nowadays, the most rational relationship which expresses the friction factor f is that of 

Colebrook (1939). As stated by Falvey (1987) in his conclusion, "the universal use of 

Colebrook equation is recommended". He essentially recalls that "most of the major 

engineering organizations in the world are now using the Colebrook equation to estimate 

the frictional resistance of open and closed conduit flows. Hager (1985) confirmed this 

assertion by indicating that in Europe the use of Colebrook's formula is more and more 

preferred over Manning's formula. Colebrook's formula has the advantage of being 

applied in ranges of hydraulic parameters well beyond those observed experimentally. 

According to Colebrook (1939), the friction factor f is expressed as: 

2
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where R is the Reynolds number. As it can be seen, Eq. (4) is implicit towards f which 

must be computed using a trial-and-error approach. Several research workers have 

proposed approximate relationships to Eq. (4) that have been reported and discussed in 

the recent study of Zeghadnia et al. (2019). 

For the rough turbulent flow, f is obtained from Eq. (4) after writing R→. The Nikuradse 

relationship is then reproduced: 
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The present study is based on equations (3) and (5) to derive a new relationship of the 

average velocity of a flow in open channels, applicable in the rough turbulent domain. 

Given the universality of equations (3) and (5), the derived flow velocity formula will 

also be a universal equation. Even more, it will be derived the characteristic length of the 

considered channel or conduit, whether it is the width of the channel or the diameter of 

the filled or partially filled circular conduit, or even the base width of a trapezoidal 

channel …etc. The characteristic length can be also the flow depth h. The calculation of 

this characteristic length will be explicit and will not require any estimation of the flow 

resistance coefficient. This is no longer the case when equations (3) and (5) are used 

simultaneously. 

CHARACTERISTIC LENGTH 

The characteristic length L could be one of the above mentioned non-exhaustive 

parameters. One of the problems of uniform-flow computation is to evaluate the 

characteristic length L when the above five other variables are given, namely the 

discharge Q, the aspect ratio  of the wetted area, the channel bed slope S0, the absolute 

roughness  or Strickler’s k roughness coefficient, and the kinematic viscosity . If the 

flow is in the fully rough zone, where effects of viscosity are neglected, the computation 

can be performed by the use of the continuity equation along with a uniform-flow formula 

as that of Manning-Strickler expressed by Eq.(1). 

The water area A and the wetted perimeter P can be written respectively as: 

1
2 ALA =           (6) 

1LPP =                          (7) 

where the non-dimensional parameters A1 and P1are respectively the water area and the 

wetted perimeter when the characteristic length L is equal to unity (one meter). Thus, the 

hydraulic diameter Dh = 4A/P is as: 

1

1
4

P

A
LDh =              (8) 

Table 1 groups together some formulae of A1and P1for various channel shapes in 

accordance with the chosen characteristic length L. 

Combining Eqs. (3) and (5) along with the continuity equation V = Q/A results in the 

following conveyance relationship valid for a channel of any shape, when the flow is in 

the rough turbulent regime: 
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Eq. (9) can be written in dimensionless form by multiplying both the left and the right-

hand sides by the following quantity: 

2/52
1

1
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gP

A
=         (10) 

Thus, after some arrangements, one may obtain what follows: 

( ) 8.14log24 2/5=           (11) 

where: 
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and  is as: 

1

1

P

LA


 =         (13) 

Eq. (11) is the implicit relation that gives the exact value of the characteristic length L. 

The known parameter is the function, what is sought is the  parameter in order to 

deduce L in accordance with Eq. (13). The values of A1 and P1 are given in Table 1 

according to the shape of the considered channel. 

Taking into account Eq. (8), Eq. (13) can be rewritten as: 

hD/

25.0


 =       (13a) 

Thus, when the relative roughness /Dh varies within the wide practical range 0.0001to 

0.05 in the rough turbulent zone (Moody, 1944), the corresponding range of  is 5    

2500. In this range, deep correlation analysis has shown that Eq. (11) can be formulated 

as the following power law, with a coefficient of determination R2 greater than 0.999:   

65.285.8  =          (14) 

Assuming this result, the characteristic length L, defining a linear dimension of a channel 

of any shape, is easily deduced from equation (14) along with Eqs. (12) and (13). The 

final result is: 
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Eq. (15) is explicit and does not require knowing the flow resistance coefficient which is 

implicitly contained in this relationship. Eq. (15) is relevant for all forms of canals and 

conduits. Observe that the characteristic length L is given as the product of two functions. 

The first one, which is represented by the quantity in parentheses, has the dimension of a 

length. The second one is dimensionless and contains both A1 and P1 parameters, meaning 

that it depends exclusively on the aspect ratio as indicated in table 1. Four parameters 

must be given to calculate L, namely the flow rate Q, the channel bed slope S0, the absolute 

roughness , and the aspect ratio. Kinematic viscosity  is not required since Eq. (15) is 

valid in the rough turbulent flow zone for which the effect of viscosity is negligible.  

Eq. (15) can be rewritten in the following reduced form: 

*LL =         (16) 

where: 
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623.0
1

245.0
1*

A

P
L =         (18) 

The condition on the average value of  for the establishment of the hydraulically rough 

flow was formulated by Hager (1989) as: 

  2.02
0 )(30

−
 gSQ         (19) 

Eq. (15) is valid provided the condition expressed by Eq. (19) is respected. It is worth 

noting that the deviation between the exact value of the characteristic length given by Eq. 

(11) and the approximate value computed using Eq. (15) is less than 1% only, as has been 

confirmed by numerous calculations and that the next numerical examples corroborate. 

Eq. (15) is interesting insofar as it allows a fast and acceptable calculation of the order of 

magnitude of the characteristic length. 

On the other hand, it is interesting to know that the function  has a physical meaning. 

To do so, let’s define in a wide rectangular channel, a square-shaped flow slice of width 

b and depth h = b such that  = b/h = 1 (Fig. 1).  
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Figure 1: Square-shaped flow slice cut out from a wide rectangular channel  

Choosing L = h as the characteristic length, the water area A can be written as: 

A = bh = h2(b/h) = h2A1 

Since b/h = 1, then one can write: 

A1 = 1 

The wetted perimeter P is as: 

P = b = h(b/h) = hP1 

Since h = b, then one can deduce that: 

P1 = 1 

According to Eq. (18), one may write what follows: 

1
623.0

1

245.0
1* ==
A

P
L  

Inserting this result into Eq. (16) yields: 

hLL === *  

This clearly shows that the function  corresponds to the depth h of a square-shaped flow 

slice cut out from a wide rectangular channel. 

EXACT ANALYTICAL SOLUTION 

On may obtain an exact solution of Eq. (11) without resorting to the explicit approximate 

Eq. (15). For that, let us express Eq. (11) as follows: 

( )
( ) 8.14ln

10ln

24 2/5=                        (20) 

which can be written in compact form as: 

( ) C= 8.14ln2/5                           (21) 

where: 

b

bh =



Achour B. & Amara L. / Larhyss Journal, 48 (2021), 91-108 

98 

( )
24

10ln
=C                                                                                                                    (22) 

The exact analytical solution of the transcendental Eq. (21) can be formulated in terms of 

the Lambert W function. This solution for 0C  reads then: 
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In which W  is the Lambert Function defined as the inverse function of 
wwez =  i.e. 

( )zw kW=  for some integer k . Since the argument of the function is a real number, W-

function has two branches namely 0W  and 1−W . On account of its importance in 

mathematics, physics and engineering, the Lambert W function was included in various 

software such as Maple and Mathematica. As it is a transcendental function, formal 

solution of the Lambert W-function can be expressed only in endless form. However, a 

perusal of Eqs. (12) and (22) indicates that the argument x involved in ( )x0W  is very 

large. For →x , the following three-term asymptotic development holds (Boyd, 

1998):  

( ) ( ) ( )
( )
( )x

x
xxx

ln

lnln
lnlnln0 +−=W                                                                                       (24) 

Using Eq.(24), the computation of the Lambert function is greatly simplified. When 

substituted in Eq. (23), the exact solution for  and hence for the characteristic length L  

is worked out from Eq. (13).   

EXAMPLE 1 

In order to compute the diameter D of a partially filled circular conduit, carrying a uniform 

flow in a rough turbulent flow zone, the following parameters are given: the discharge 

Q= 100 l/s, the absolute roughness  = 0.5 mm, the channel bed slope S0 = 0.001, the 

aspect ratio  = 0.6 corresponding to (Table 1)  = cos-1(1-2 ) = 1.772 rd., and the 

kinematic viscosity  = 0.000001 m2/s. Since the unknown parameter is the characteristic 

length L = D, table 1 indicates that, for a partially filled circular conduit, the dimensionless 

parameters A1 and P1 are respectively: 

A1 = ( - sin cos)/4 = 0.492 

P1 =  = 1.772 

Applying Eq. (15) results in: 



New theoretical considerations on the rough turbulent flow parameters  

99 

( )
mDL 513.0
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Consequently, the flow depth is: 

h =  D = 0.6  0.513  0.308m 

Let's check if the flow is in the rough turbulent zone by applying Eq. (16). Thus: 

    mmmgSQ 3.00003.0)001.081.9(101001030)(30
2.02362.02

0 ==
−−−−

  

The condition is satisfied since  calculated is less than  given in the statement of the 

problem. 

Besides the present result, the exact analytical solution of the problem can be used.  Eq. 

(12) gives: 

94.28296164
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Thus, Eq. (22) allows writing: 

( )
111517766.7

24

10ln
==


C  

The Lambert ( )x0W  function can then be calculated from Eq. (24) for the argument x  

such as: 

12426400993
25

3702738
== Cx  

leading to the following approximate value of ( )x0W  expressed by Eq. (24): 

( ) ( ) ( )
( )
( )

420.8706203
12426400993ln

12426400993lnln
12426400993lnln12426400993ln0 =+−=xW   

This value is highly accurate to the second decimal place compared with the exact value 

of ( )x0W  computed by Maple software such as: 

( ) 220.8737668124264009930 =W  

Replacing the approximate value of ( )x0W  in Eq. (23) leads to the value of  as: 

4285.322738420.8706203
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Finally, the characteristic length L = D is deduced from Eq. (13) as:  

m
A

P
DL 0.51382801

70.49202835

81.77215424100.5
4285.322738

-3

1

1 =


===


  

Checking the validity of the result 

The exact value of the characteristic length L = D can be obtained by solving the implicit 

equation (11), using an iterative process or using the exact analytical solution when an 

exact value of ( )x0W  is utilized. The function  was computed previously as:  

9.28296164=  

Thus, Eq. (11) is written as: 

( ) 08.14log249.28296164 2/5 =−   

Using an iterative process, the solution of this equation is obtained as: 

68206973.285=  

According to Eq. (13), one may write: 

m
A

P
DL 514475.0

492.0

732.1001.05.068206973.285

1

1 =


===


 

This result is the same that one obtains once the exact value of ( ) 220.8737668x0 =W  is 

reported in Eq. (23) leading to 6820694573.285= which in turn gives mDL 514475.0==  

The deviation between the exact value of D obtained from the iterative process or the 

analytical solution and that computed explicitly using the proposed method from Eq. (15) 

is: 

%276.0
514475.0

51305438.0514475.0
100 

−
  

This deviation is only of 0.13% if in the analytical solution the Lambert function ( )x0W  

is computed from the approximate expression (24).  

EXAMPLE 2 

Compute the depth h in a triangular channel for the following data: 

Q = 0.2 m3/s;  = 0.0009 m; S0 = 0.0005;  = 45°;  = 0.000001 m2/s 

For the tilt angle  = 45°, one may obtain m = cotg  = 1. 
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Let's check if the flow is in the rough turbulent zone by applying Eq. (16). Thus: 

    mmmgSQ 35.000034726.0)0005.081.9(2.01030)(30
2.0262.02

0 ==
−−−

  

The condition is satisfied since  calculated is less than  given in the statement of the 

problem. 

The only characteristic length for the case of the triangular canal is the depth h. Table 1 

indicates that: 

A1 = m = 1 

P1 = 2(1 + m2)1/2 = 2.82842712 

According to Eq. (15), one may write: 

mhL 56605196.0
1

82842712.2

0005.081.985.8
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The exact analytical solution of the problem using the Lambert function is as follows:  
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From Eq. (22), the constant C  is computed as:  

( )
12.5979363

24

10ln
==


C  

The Lambert ( )x0W  function is then calculated from Eq. (24) for the argument x  such 

as: 

91259648070
25

3702738
== Cx  

The approximate value of ( )x0W  from Eq. (24) is, therefore: 

( ) ( ) ( )
( )
( )

20.2453892
91259648070ln

91259648070lnln
91259648070lnln91259648070ln0 =+−=xW   

This value is to be compared with the exact one computed by Maple software which is:  

( ) 620.2485977912596480700 =W . 

Replacing this exact value of ( )x0W  in Eq. (23) leads to the value of   : 

222.474374620.2485977
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The characteristic length L = h is then deduced from Eq. (13):  

m.
A

P
hL 56632730

1

82842712.20009.0222.474374

1

1 =


===


 

Note that if the approximate value of ( )x0W  was used from Eq. (24) in the preceding 

calculation, this would give the characteristic length m.hL 565600920==  which 

deviates only by 0.128 % from the exact value of h .  

Let's check the previous calculation result by determining the exact value of h from the 

implicit equation (11) by an iterative process. We have: 

1.14689744=  

So, Eq. (11) is written as: 

( ) 08.14log241.14689744 2/5 =−   

Adopting an iterative scheme, the previous equation gives  as: 

474374.222=  

Which is the same value obtained from the exact analytical solution.  

The deviation between the exact value of h and that computed explicitly using the 

proposed method Eq. (15) is: 

%0486.0
5663273.0

56605196.05663273.0
100 

−
  

MEAN FLOW VELOCITY RELATIONSHIP AND RELATED ROUGHNESS 

COEFFICIENT 

Assuming Q = VA and Rh = LA1/P1, Eq. (15) gives the mean velocity of the flow as the 

following relationship: 

0
65.0 SRKV

h
=     

        (19) 

Where K (m0.35/s) is the roughness coefficient defined as: 

15.0

85.8



g
K =           (20) 
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That is: 

1
85.8

15.0

=
g

K 
          (21) 

Eq. (19) constitutes a new formulation of the mean velocity V of a rough turbulent flow. 

There are no restrictions in its application because it results from a combination of 

universally accepted rational relationships, unlike the Manning-Strickler formula which 

has limits of applicability. Note that the exponent of the hydraulic radius in equation (19) 

is slightly smaller than it is in the Manning-Strickler formula.  

Eq. (20) is interesting insofar as the resistance coefficient K can be directly evaluated 

from the absolute roughness  alone. As it can be observed, the roughness coefficient K 

is independent of the hydraulic radius. It depends on both gravity and absolute roughness, 

which is physically justified. 

According to Hager (1987), Strickler’s k roughness coefficient is expressed as: 

1
2.8

6/1

=
g

k 
           (22) 

Combining Eqs. (21) and (22) results in: 

60/1

926.0


=

K

k
         (23) 

In the wide practical range 0.1 mm     50 mm, the ratio k/K varies between 0.974 and 

1.080 according to Eq. (23), thus showing that the variation range is not so wide.  

On the other hand, Eq. (19) can be written under the form of Chezy’s equation such that: 

0
5.0 SRCV

h
=          (24) 

where C is the Chezy’s resistance coefficient. Comparing Eqs. (19) and (24) results in: 

15.0
h

RKC =         (25) 

Combining Eqs. (20) and (25) yields: 

( ) 15.0/

85.8

hR

g
C


=         (26) 

Or: 

( )
1

85.8

/ 15.0

=
g

RC h
      (26a) 
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This is the relationship linking Chezy’s resistance coefficient C to both the relative 

roughness /Rh and the acceleration due to gravity g, in the fully rough turbulent state of 

the flow. 

Comparing Eqs (26a) and (22), one may derive the following C-k relationship: 

15.060/108.1
h

RkC =         (27) 

REYNOLDS NUMBER 

Let R be the Reynolds number characterizing the flow in the rough turbulent domain. 

Generally, it is well known that R is defined as: 

P

Q
R

4
=          (28) 

According to Eq. (16) for L = P, one may write: 

*PP =          (29) 

Thus, Eq. (28) becomes: 

*

4

P

Q
R


=          (30) 

Eqs. (7) and (29) along with Eq. (16) give what follows: 

*
1 PPL =                                                                                                                      (31) 

That is: 

1

*
*

P

P
L

L
==


         (32) 

Whence: 

1
** PLP =           (33) 

Inserting Eq. (18) into Eq.(33) results in:  

623.0
1

245.1
1*

A

P
P =         (34) 
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The real value of the exponents of A1 and P1 are in fact equal to 0.62264151 and 

1.24528302 respectively. These numbers have been rounded off to their current values, 

i.e. 0.623 and 1.245. Thus, it is easy to show that Eq. (34) can be written as:  

623.0

1

2
1*














=

A

P
P         (35) 

It is useful to note that whatever the chosen characteristic length L, i.e. whether linear 

dimension characterizing the geometry of the considered channel or flow depth, the 

computed value of P* according to Eq. (35) remains unchanged. 

Inserting Eq. (35) into Eq. (30) yields: 

623.0

2
1

14
















=

P

AQ
R


        (36) 

Eq. (37) is the compact form of the Reynolds number R of a flow in the turbulent rough 

regime. It can be developed taking into account Eq. (17). After some simplifications and 

arrangements, the final result is: 

623.0

2
1

1

65.2/1

15.0

0
65.1

767.8




























=

P

AgSQ
R


        (37) 

Eq. (37) is valid for any shape of channels when the flow is in the rough turbulent zone. 

According to Eq. (37), the characteristic length L is not required to compute the Reynolds 

number R which depends on the discharge Q, the channel bed slope S0, the absolute 

roughness , the aspect ratio  related to A1 and P1 as shown in table 1, and the kinematic 

viscosity .  

HYDRAULIC DIAMETER 

The practical relationship of the hydraulic diameter encompassing a minimum of data can 

be derived by inserting Eq. (15) into Eq. (8). After some arrangements, one may obtain 

what follows: 

65.2/1

2
1

1
65.2/1

0

15.0

757.1



























=

P

A

Sg

Q
Dh


        (38) 

The hydraulic diameter is thus presented as a function of the flow rate Q, the absolute 

roughness ,  the channel bed slope S0, and the aspect ratio. Note that the characteristic 

length is not required as in the case of the Reynolds number R. From Eq. (38) the 
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particular case of the filled circular pipe for which Dh = D can be deduced. Table 1 in the 

appendix indicates that A1 =  / 4 and P1 = . Thus, Eq. (38) becomes: 

65.2/1
15.0

676.0
















=

fSg

Q
D


        (39) 

In this case, the channel bed slope S0 has been replaced by the slope Sf of the hydraulic 

grade line or the hydraulic gradient, also called the friction slope. 

CONCLUSION 

The study was devoted to the parameters of a flow in the rough turbulent domain insofar 

as this one occupies an important place in the hydraulic engineering practice. One of these 

parameters was the characteristic length which defines the linear dimension of any 

channel shape. It has been shown that this characteristic length is governed by an implicit 

equation encompassing all the parameters which govern the flow with the exception of 

viscosity [Eq.(11)]. The implicit character of the equation was removed thanks to a deep 

correlation analysis process which showed that this relation can be replaced by an explicit 

power-law with a coefficient of determination greater than 0.999 [Eq.(14)]. Thanks to 

this, it was shown that the characteristic length is equal to the product of two functions 

[Eq. (16)]. The first function depends on three parameters, namely the flow rate Q, the 

absolute roughness , and the channel bed slope S0. The second one depends only on a 

single parameter which is the aspect ratio of the wetted area, the expressions of which are 

grouped together in Table 1 according to the chosen characteristic length L. Moreover, an 

exact analytical solution of the implicit equation was obtained in terms of the Lambert 

function which simplifies notably the direct solution without resorting to an iterative 

process computation.  

The second parameter of the rough turbulent flow studied is the mean flow velocity V. It 

has been clearly shown that V can be put in the form of the Manning-Strickler equation 

with slightly different coefficients [Eq.(19)]. Unlike with the Strickler roughness 

coefficient k, the resistance coefficient K related to the new velocity model is not 

empirical. It has been determined analytically and is closely related to the absolute 

roughness through an explicit physically justified relationship [Eq(20)].  

The last two parameters of the rough turbulent flow studied are the Reynolds number R 

and the hydraulic diameter Dh. Following mathematical manipulations, these two 

parameters were expressed by very practical relationships which did not contain the 

characteristic length L [Eqs. (37) and (38)]. 

Future research will focus on both transition and smooth flow regimes which also occupy 

an important place in many applications related to laboratory or field testing. The question 

of how to correct the characteristic length LR of the rough turbulent flow will have to be 
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resolved if the flow is actually in the transition or smooth domains. It will be necessary 

to add to Eq. (16) another function that should depend both on the Reynolds number and 

on the relative roughness when the flow is in the transition domain but will depend only 

on the Reynolds number when the flow is in the smooth state. 
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APPENDIX 

 

Table 1: Formulae governing the dimensionless parameters A1 and P1 for some 

channel shapes 

Channel shape 
Aspect 

ratio 
A P L A1 P1 

 

 = b/h 

m=cotg 
bh+mh2 b+2h(1+m2)1/2 

b -1(1+m -1) 
1+2-1 

(1+m2)1/2 

h  + m +2(1+m2)1/2 

 

 = b/h 

m = 0 
bh b+2h 

b -1 1+2-1 

h  +2 

 

 = 1 B2 4B B 1 4 

 

=h/D 

=cos-1 

(1-2) 

D2(-sin 

cos)/4 
D 

D (-sincos)/4  

H 
(-sin 

cos)/(42 ) 
/ 

 

 = 1 D2/4 D D  / 4  

 

=0 

m=cotg 
mh2 2h(1+m2)1/2 h m 2(1+m2)1/2 

 

h

b



b

h

b

b

h
D

D

h


