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ABSTRACT  

Flow measurement in open channels can be performed using a variety of devices such as 

multi-shaped weirs or hydraulic jump flow meters. Most of them have a sill at which solid 

deposits can accumulate. Self-Cleaning devices are those with a flat bottom which also 

corresponds to the bottom of the channel in which they are inserted. There is no bottom 

elevation in these devices. It is one of these devices that the present study sets out to 

examine from both a theoretical and an experimental point of view. It is a lateral 

contraction formed by a thin plate with a full central opening of width b placed 

perpendicular to the flow in a rectangular channel of width B. It is the simplest device 

that can be used for flow measurement. The theory is based on taking into account two 

sections, one located upstream of the device and the other taken to the right of the opening 

where critical flow could take place. The head loss caused between these two sections is 

not negligible, but current knowledge does not allow it to be evaluated. For this reason, 

this head loss is neglected in the theoretical development. By writing the equality of the 

heads between the two previously mentioned sections and introducing the dimensionless 

parameter 
*

1h , a third degree equation in 
*

1h  is obtained. This equation is written in the 
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following functional form 
*

1 / 0( , )h B b = . The dimensionless parameter 
*

1h represents 

the ratio between the depth h1 and the critical depth hc in the initial section. Thus, for a 

given value of the contraction rate B / b, 
*

1h is a constant. This fact is corroborated by 

experimental tests.  The only real root to consider from the third degree equation is such 

that 
*

1h  > 1 because the flow is subcritical in the initial section upstream of the device. In 

addition, the theoretical development clearly shows that the discharge coefficient Cd of 

the device is closely related to 
*

1h by an explicit relation. In other words, knowing the 

value of the ratio B/b, 
*

1h is then given by solving the third degree equation, and 

consequently the discharge coefficient dC is then worked out. 

The theoretical development is confronted with the results of the tests carried out on eight 

devices whose contraction rate b / B varies between 0.15 and 0.45. The main conclusion 

to retain is that the maximum relative deviation between theoretical and experimental 

discharge coefficients is less than 2%. All the observed relative deviations are taken into 

account in the fitting of the theoretical discharge coefficient relationship. 

Keywords: Flow measurement, discharge, flow meter, discharge coefficient, sharp edge, 

width constriction.   

RESUME 

La mesure du débit dans les canaux ouverts peut être effectuée à l'aide de divers dispositifs 

tels que des déversoirs à formes multiples ou des débitmètres à sauts hydrauliques. La 

plupart d'entre eux ont un seuil sur lequel les dépôts solides peuvent s'accumuler. Les 

dispositifs autonettoyants sont ceux à fond plat qui correspond également au fond du canal 

dans lequel ils sont insérés. Il n'y a pas d'élévation de fond dans ces appareils. C'est l'un 

de ces dispositifs que la présente étude se propose d'examiner à la fois d'un point de vue 

théorique et expérimental. Il s'agit d'une contraction latérale formée par une plaque mince 

avec une ouverture centrale pleine de largeur b placée perpendiculairement à l'écoulement 

dans un canal rectangulaire de largeur B. C'est le dispositif le plus simple qui puisse être 

utilisé pour la mesure du débit. La théorie repose sur la prise en compte de deux sections, 

l'une située en amont de l'appareil et l'autre prise au droit de l'ouverture où un écoulement 

critique pourrait avoir lieu. La perte de charge induite entre ces deux sections n'est pas 

négligeable, mais les connaissances actuelles ne permettent pas de l'évaluer. Pour cette 

raison, cette perte de charge est négligée par le développement théorique. En écrivant 

l'égalité des charges entre les deux sections précédemment mentionnées et en introduisant 

le paramètre sans dimension 
*

1h , une équation du troisième degré est obtenue. Cette 

équation est écrite sous la forme fonctionnelle suivante 
*

1 / 0( , )h B b = . Le paramètre 
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sans dimension 
*

1h  représente le rapport entre la profondeur 1h  et la profondeur critique 

ch dans la section initiale. Ainsi, pour une valeur donnée du taux de contraction B/b, 
*

1h

est une constante. Ce fait est corroboré par des tests expérimentaux. La seule racine réelle 

à considérer à partir de l'équation du troisième degré est telle que 
*

1h  > 1 car l’écoulement 

est fluvial dans la section initiale en amont de l'appareil. De plus, le développement 

théorique montre clairement que le coefficient de débit dC  du dispositif est étroitement 

lié à 
*

1h  par une relation explicite. En d'autres termes, connaissant la valeur du rapport 

B/b, 
*

1h  est alors donnée en résolvant l'équation du troisième degré, et par conséquent le 

coefficient de débit dC  est alors déduit. 

Le développement théorique est confronté aux résultats des tests effectués sur huit 

appareils dont le taux de contraction b/B varie entre 0,15 et 0,45. La principale conclusion 

à retenir est que l'écart relatif maximal entre les coefficients de débit théoriques et 

expérimentaux est inférieur à 2%. Tous les écarts relatifs observés sont pris en compte 

dans l'ajustement de la relation du coefficient de débit théorique. 

Mots clés : Mesure de débit, débit, débitmètre, coefficient de débit, arête vive, 

rétrécissement de largeur. 

INTRODUCTION 

In free-surface hydraulics, measuring the flow rate through a channel is a common 

problem encountered in the practice of the hydraulic engineer. Knowledge of the flow 

rate is required for determining the discharge capacity of a given channel or for 

establishing the synthetic curve of the head-discharge law of the channel. 

In the case of a uniform flow, it is accepted that the flow rate through a given channel 

depends on five parameters which are: the depth of the flow, the geometric slope of the 

channel, the absolute roughness of the walls of the channel, the linear dimensions of the 

channel and finally the viscosity of the flowing liquid. From these five parameters, the 

flow calculation is then possible by using one of the usual formulas for uniform flow. 

However, in practice, several devices can be used to estimate the flow rate through a given 

channel and which is the same as that which passes through the device used. Among the 

wide variety of devices available today, it is possible to find the one which would best 

meet the requirements imposed by the user and capable in particular of providing the 

required precision in the measurement of the desired flow rate. The most used devices are 

either constituted by a thin plate of rectangular notched shape, or by a broad-crested sill, 

the most common shape of which is either rectangular or triangular (Bouslah, 2006; 

Achour et al., 2003; Kechida, 2006; Achour 2013). Their placement through a flow causes 
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a raise of the upstream level of water, the free discharge of which downstream is obtained 

by means of thin-walled devices. The best known of these is certainly the sharp-crested 

V-notched weir known as Thomson weir (Bos, 1976; 1989; De Coursey and Blanchard, 

1970; Rao, 1963), the precision of which is sufficient for both low and high heads. 

A thin plate with lateral constriction is also one of the simple devices designed to measure 

the flow rate in open channels, particularly rectangular channels due to the easier 

implementation (Vallentine, 1958; Hachemi Rachedi, 2006). These studies are purely 

experimental and aimed to define the Depth-discharge law of the device. The first study 

seems unreliable for several reasons, such as the low flow rates which were varied 

between 0.708 l/s and 2.24 l/s and the shallow depths tested, the average of which is only 

10 cm. Extrapolation of the results derived from this study to practical cases where flow 

rates can reach an average of 30 l/s to 40 l/s does not seem possible. The results of this 

study should be viewed with great caution. On the other hand, the second study is more 

reliable because the tested flow rates and depths are in the practical range. The 

experimental results of this study will be used herein in order to validate the theoretical 

development. 

In practice, it is also used the so-called hydraulic jump flow meters to measure the flow 

rate in open channels. With the exception of Achour’s hydraulic jump flow meter 

(Achour, 1989) whose cross section shape is triangular, hydraulic jump flow meters are 

often of rectangular shape. The best known of these are the Venturi and Parshall (Bos, 

1976) or the modified Venturi (Hager, 1985). These devices have the ability to not only 

measure the flow rate but also to raise the level of the downstream flow which is a real 

advantage in low slope areas (Achour, 1989). 

In general, the use of the above-mentioned devices is to measure the depth of the flow in 

an upstream section after their placement in the considered channel. By measuring this 

upstream flow depth and knowing the geometric characteristics of the device, it is then 

possible to estimate the flow rate by applying the Depth-Discharge relationship. For these 

reasons, the devices are called semi-modular as opposed to modular devices whose flow 

rate depends only on their geometric characteristics.  

In this study, a thin lateral constriction plate used as measuring discharge device in a 

rectangular open channel is theoretically examined. The theoretical development aims to 

establish both the discharge and the discharge coefficient relationships. A theoretical 

development is proposed which will be supported by an experimental validation based on 

the tests of Hachemi-Rachedi (2006). 
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DESCRIPTION OF THE DEVICE AND THE FLOW 

Fig. 1 shows a perspective view of the studied device. This is inserted in a cross section 

of a rectangular channel of width B and of which it is desired to evaluate the flow rate. 

The device consists of two thin-walled projections placed on either side of the walls of 

the channel. A rectangular notch of width b appears between the two projections of the 

device. This notch has a flat floor, i.e. without any bottom elevation, unlike conventional 

flow measurement devices. The placement of the measuring device in the canal causes a 

reduction or a narrowing of its cross-section. The ratio b/B = β defines the rate of 

contraction of the section of the canal at the site of the installation of the device. The rate 

of contraction can also be defined as  = 1 – b/B = 1- β. When the opening width is 0, i.e. 

b = 0, corresponding to β = 0, the contraction rate is σ = 1, indicating that the entire section 

of the canal is entirely closed.  On the other hand, when the width of the notch is equal to 

B (b = B), corresponding to β = 1, the contraction rate is σ = 0, indicating that all the 

section of the channel is entirely open. It is therefore possible to note that the 

dimensionless parameter β is such that 0 ≤ β ≤ 1 or that the parameter σ is such that 0≤σ≤1. 

One can also note that thanks to the geometry of the device under consideration, the 

longitudinal axis of the channel is not affected and remains horizontal over the entire 

length of the channel, from upstream to downstream and through the notch of the device. 

This particularity is interesting because it avoids any solid deposit which could be 

entrained by the flow. This geometry therefore gives the device a self-Cleaning character. 

In order to observe in more detail the flow upstream, downstream and at the location of 

the device, we present on photographs (1) to (3) some views of this flow. Photograph 1 

clearly shows the subcritical nature of the flow in the measurement channel, immediately 

upstream of the device. This state of flow can be observed for all devices tested. It also 

shows the supercritical nature of the flow downstream of the device as well as the mass 

of water surrounding the liquid layer crossing it. This body of water can be observed in 

the photograph 2. The mass of water surrounding the overflow is created because the 

liquid streams of the poured water fall on those of the bottom flow. The contraction is 

incomplete since the liquid streams of the bottom flow are directly drawn towards the 

outlet of notch, without undergoing contraction in the central axis of the notch. When 

falling, the liquid streams of the headwater interfere with the natural development of the 

bottom streamlines which have no other possibilities than to expand laterally by 

occupying the free space located on either side of the overflow water body. The liquid 

mass can take non-negligible proportions, depending on the value of the pouring head as 

well as that of the contraction rate β. 
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Figure 1: Definition sketch of a sharp edged constriction in a rectangular channel 

 

Figure 2: Plan view of the channel and the device as well as the longitudinal profile 

of the flow 

 

Photo 1: Plan view of the device placed in a rectangular supply channel. View of the 

forced contraction of the flow. 
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Photo 2: View of the flow upstream and downstream of the device. Flow from right 

to left. 

 

Photo 3: Side view of the contracted flow crossing the notch of the device 

THEORETICAL DEPTH-DISCHARGE RELATIONSHIP 

The critical depth in the rectangular cross-section 1-1 (Fig. 2) is written as: 

1/3
2

21c

Q
h

g B

 
=   
 

           (1) 
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Where the subscript « c » denotes the critical conditions. 

On the other hand, the critical depth in the rectangular cross-section 2-2 is as: 

1/3
2

22c

Q
h

gb

 
=   
 

          (2) 

The ratio of relations (1) and (2) gives: 

2/31

2

( / )
c

c

h
b B

h
=             (3) 

Resulting in: 

2/3
2 1 ( / )c ch h B b=            (4) 

Assume that there is no pressure drop between sections 1-1 and 2-2. Equal total heads 

between sections 1-1 and 2-2 translates into: 

1 2 2

3

2
cH H h= =             (5) 

Combining Eqs. (4) and (5) results in: 

2/3
1 1

3
( / )

2
cH h B b=             (6) 

Hence: 

2/31

1

3
( / )

2c

H
B b

h
=            (7) 

The total head 1H can be written as: 

2

1 1 2 2
12

Q
H h

gB h
= +            (8) 

Implying that: 

2
11

2 2
1 11 12cc c

hH Q

h h gB h h
= +           (9) 

Eq. (1) allows writing that: 
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2
3

2 1c

Q
h

gB
=         (10) 

Combining Eqs. (9) and (10) yields: 

11

2
11 1 1

1

2( / )c c c

hH

h h h h
= +         (11) 

Eqs. (7) and (11) give what follows: 

2/31 1

2
11 1 1

1 3
( / )

22( / )c c c

H h
B b

h h h h
= + =         (12) 

Let us adopt the following non-dimensional parameter 

*
1 11/ ch h h=         (13) 

Inserting Eq. (13) into Eq. (12) results in: 

* 2/3
1 *2

1

1 3
( / )

22
h B b

h
+ =         (14) 

Eq. (14) shows that the non-dimensional parameter 
*
1h  only depends on the ratio B/b. 

Note that the flow in the section 1-1 is subcritical, meaning that 1 1ch h or
*
1 1h  .  

Eq. (14) is represented graphically in figure 3. It shows that the non-dimensional 

parameter 
*
1h  increases with the increase of the ratio /B b . 

 

Figure 3: Variation of 
*
1 ( / )h B b according to Eq. (14) 
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Eq. (14) can be rewritten as: 

*3 2/3 *2
1 1

3 1
( / ) 0

2 2
h B b h− + =         (15) 

It is a third order equation of the form: 

3 2 0z az bz c+ + + =         (16) 

Where: 2/33
( / )

2
a B b= − ; 0b = ; 1/ 2c =  

To find the solutions of equation (15), use the method described by Spiegel (1974). Let 

us assume the following parameters: 

2 4/3 4/33 9( / ) ( / )

9 4 9 4

b a B b B b
H

−
= = − = −


          (17) 

3 3 29 27 2 27 2 27 / 2 2(27 / 8)( / )

54 54 54

ab c a c a B b
R

− − − − − +
= = =   

Thus: 

( )
21

/ 2
8

R B b = −
 

          (18) 

Let's find the angle  such that: 

( ) ( )

( )
( )

2 2

2

23 4

1
/ 2 / 2

8cos 1 2 /
/( / )

64

B b B bR
B b

B bH B b


−

   − −
   

= + = = − = −
−

          (19) 

That is: 

( )
21cos 1 2 /B b
−−  = −

 
          (20) 

The discriminant of equation (16) is expressed as: 

3 2H R = +           (21) 

Inserting  Eqs. (17) and (18) into Eq. (21) and rearranging, one may obtain: 

( ) ( )( )
21 1

1 / 1 / 1 /
16 16

B b B b B b  = − = − +
 

        (22) 

Eq. (22) shows that the discriminant  is equal to zero in the case where B / b = 1. But, 

this is a trivial case which does not interest our study. The study is focussed on cases 
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where the ratio B / b is greater than 1, which means that  is negative according to Eq. 

(22). In this case, Eq. (16) has three real roots which are given as:  

1 2 cos( / 3) / 3z H a= − −         (23) 

2 2 cos( / 3 240 ) / 3z H a= − +  −         (24) 

3 2 cos( / 3 120 ) / 3z H a= − +  −           (25) 

Whence: 

( )
2/3 1 2 *

1 1;1

1 1
/ cos cos 1 2( / )

3 2
z B b B b h− −   = − + =     

                (26) 

( )
2/3 1 2 *

2 1;2

1 1
/ cos cos 1 2( / ) 240

3 2
z B b B b h− −   = − +  + =     

          (27) 

( )
2/3 1 2 *

3 1;3

1 1
/ cos cos 1 2( / ) 120

3 2
z B b B b h− −   = − +  + =     

          (28) 

For a given configuration indicated in Figure 2, there is obviously only one solution to 

choose among the three solutions given by equations (26), (27), and (28). It is the one that 

corresponds to 
*
1h > 1. 

Eq. (1) allows writing that: 

3/2
1cQ g Bh=         (29) 

Taking into account Eq. (13), Eq. (29) becomes: 

3/2
1

*3/2
1

h
Q gB

h
=         (30) 

Eq. (30) can be rewritten as: 

3/2
12dQ C g Bh=         (31) 

Eq. (31) is the theoretical depth-discharge relationship for the studied device, where dC

is the discharge coefficient expressed as: 

*3/2
1

1

2
dC

h
=         (32) 

The upstream depth h1 of the flow is measured by a simple point gauge reading at the 

inlet of the device. 
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As the dimensionless parameter 
*
1h  is governed by Eqs. (26), (27), and (28), on may 

conclude that the discharge coefficient dC depends only on the B/b ratio. Eqs. (26), (27), 

and (28), along with Eq. (32), allow computing the discharge coefficient dC some values 

of which are given in table 1.  

Table 1: Some theoretical values of the discharge coefficient dC  

*
1h  B/b dC  

1 1 0.70710678 

1.1 1.01325224 0.61290897 

1.2 1.04759195 0.53791435 

1.3 1.09737351 0.47705667 

1.4 1.15904493 0.42686736 

1.5 1.23025997 0.38490018 

1.6 1.30940258 0.34938562 

1.7 1.39531861 0.31901538 

1.8 1.48715746 0.29280349 

1.9 1.5842748 0.2699943 

1.905 1.58925976 0.26893203 

1.91 1.59425659 0.26787671 

2 1.6861706 0.25 

 

Figure 4 shows the graphical representation of the ( / )dC B b theoretical relationship. 

 

Figure 4: Variation of the discharge coefficient ( / )dC B b for the studied device 
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Fig. 4 shows that the discharge coefficient dC  decreases with the increase of the B/b 

ratio, which is consistent with the physical meaning. For a given channel, the increase in 

the B / b ratio is due to the decrease in the output width b of the device. The decrease in 

b causes a slowing down of the upstream flow, which has the consequence of reducing 

the discharge coefficient dC . 

EXPERIMENTAL VALIDATION 

The experimental validation of the theoretical development is based on the highly 

significant tests of Hachemi-Rachedi (2006). In a rectangular channel of width B = 29.3 

cm, depth 48.5 cm and length of 12 m, eight devices were tested the characteristics of 

which are as follows: 

Table 2: Geometric characteristics of the tested devices 

b (cm) 4.40 5.30 5.90 7.40 8.80 10.25 11.70 13.20 

 = b/B 0.150 0.181 0.201 0.253 0.300 0.350 0.400 0.450 

 

The upstream depths h1 were measured using a double-precision Vernier gauge, 

graduated to 1/10th. The geometry of the devices tested had the particularity of making 

the body of water upstream of the device almost horizontal, eliminating any disturbance 

of the free surface. This undoubtedly contributed to a better precision in the reading of 

the depths by means of the gauge used. 

The flow rates were measured using an ultrasonic flowmeter whose precision varies 

between 0.1 l/s and 0.2 l/s. The flow rates were varied between 1.6 l/s and 28.20 l/s, while 

the depths h1 were in the range 4.3 cm  h1  33.02 cm. A sample of 157 pairs of (Q, h1) 

values carried out during this experimentation. 

The tests showed that for each tested contraction rate, the dimensionless parameter 
*

1h  

varied slightly around an average value whatever the flow rate, suggesting that 
*

1h is a 

constant for a given value of , as predicted by the present theory. 

Table 3 groups together the values of the theoretical and experimental discharge 

coefficients dC . Theoretical values of 
*

1h  were calculated using Eqs. (26) to (28), while 

theoretical discharge coefficient was worked out from Eq. (32). The experimental 

discharge coefficients were calculated by applying Eq. (31). For each device tested, a 

series of flow rates are obtained. Whatever the flow rate, Eq. (31) showed that the 

experimental discharge coefficient varying around an average value indicated in the table 

3. 
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Table 3: Theoretical and experimental discharge coefficients values of the eight 

tested devices 

b/B B/b 

*

1h  

Theoretical 

,d ThC  

Theoretical 

,d ExpC  

Experimental 

/d dC C  

% 

0.15017065 6.65909091 5.29141031 0.05809354 0.0570793 1.745874373 

0.18088737 5.52830189 4.66683175 0.07013774 0.0695507 0.836985804 

0.20136519 4.96610169 4.33963042 0.07821785 0.07712 1.403582367 

0.25255973 3.95945946 3.71805925 0.09863034 0.0970981 1.553520799 

0.3003413 3.32954545 3.2986833 0.11802502 0.1172322 0.671735921 

0.34982935 2.85853659 2.96435539 0.1385446 0.13678 1.273668291 

0.39931741 2.5042735 2.69745485 0.15960766 0.1580833 0.955066142 

0.45051195 2.21969697 2.47062157 0.18208562 0.1784486 1.997425276 

 

Table 3 shows that the theoretical discharge coefficients ,d ThC  are very slightly higher 

than the experimental discharge coefficients ,d ExpC . This is probably due to the head loss 

neglected during the theoretical development. The maximum relative deviation observed 

is of the order of 2% only. 

The values of the theoretical and experimental discharge coefficients of table 3 are 

represented graphically in Fig. 5. 

 

 

Figure 5: Variation of ,d ExpC with ,d ThC according to Table 3 
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Fig. 5 shows that the points ,d ExpC  and ,d ThC  are practically aligned on the first bisector 

(Red line) of equation ,d ExpC = ,d ThC . The points in figure 4 are governed satisfactorily 

by the following equation, with
2

0.9998R = :  

, ,0.9864d Exp d ThC C=         (33) 

Inserting Eq. (33) into Eq. (32) results in; 

*3/2 *3/2
1 1

0.9864 0.6975
( / )

2
dC B b

h h
= = =           (34) 

This is the final relationship of the discharge coefficient of the studied device. For a given 

value of B/b, one of the equations (26) to (28) gives the appropriate value of 
*

1h . Thus, 

Eq. (34) allows calculating the discharge coefficient Cd  of the considered device. 

Knowing the value of the discharge coefficient Cd, the measured upstream depth h1, and 

the channel width B, Eq. (31) gives the required flow rate Q. 

On the other hand, Eq. (31) can be rewritten as: 

3/2
12d

B
Q C gbh

b

 
=  

 
      (31a) 

That is: 

3/2
12Q gbh=       (31b) 

Where: 

d

B
C

b


 
=  

 
        (35) 

Combining Eqs. (34) and (35) results in: 

*3/2
1

0.6975( / )
( / )

B b
B b

h
 = =         (36) 

NOTE 

As shown in Table 3, the experimentation has more particularly interested in the low 

values of the parameter β such that β = b/B < 1/2. In fact, low values of β lead to large 

values of the upstream depth of the flow, which are therefore easy to measure. If in a 

rectangular channel the flow to be measured is associated with a shallow depth, the 
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reading of the latter risks causing relatively large relative errors. In order to reduce these 

errors, it is recommended to raise the water level by installing a device with a small notch 

b and therefore a low value of β. In addition, the great depths linked to the low values of 

β induce a low value of the approaching flow velocity that can therefore be neglected 

without causing a significant error. 

Vallentine (1958) indicates that no effect of the h1/B ratio was observed on the discharge 

coefficient Cd. Hachem-Rachedi's tests (2006) have indeed corroborated this finding. 

There is no effect of either B/h1 or b/h1 ratio (Table 4). Note, however, that the authors 

Arun Goel and Verma (2015) claim having observed the influence of b/h1 ratio on the 

discharge coefficient Cd. during tests carried out on a single device characterized by a 

contraction rate β = b/B = 1/2 .  

Table 4 gives some experimental characteristics of the flow for the case of the contraction 

rate  = 0.15. One observes in particular the clear variation of the ratio b/h1 whereas the 

experimental discharge coefficient Cd,Exp. remains practically constant around the average 

value 0.0570793. This table confirms that the b/h1 ratio has no effect on the discharge 

coefficient. This is the case for all the tested devices with a contraction rate such as 0.15 

   0.45. 

Table 4: Some experimental parameters for B = 29.3 cm, b = 4.4 cm,  = 0.15 

(Hachemi-Rachedi, 2006) 

Q (l/s) 1h  (cm) 1/b h  ,d ExpC  

2.38333 9.938 0.44274502 0.0586164 

3.21667 12.538 0.35093316 0.05582729 

3.63333 13.218 0.33287941 0.05825584 

4.2 14.858 0.29613676 0.05650562 

4.48333 15.698 0.28029048 0.05554148 

5.51667 17.674 0.24895326 0.05720808 

5.96667 18.498 0.23786355 0.05778665 

6.46667 19.598 0.22451271 0.05743091 

7.03333 21.046 0.20906586 0.05612931 

7.66667 22.132 0.19880716 0.05673597 

8.4 23.598 0.18645648 0.0564611 

9.03333 24.528 0.17938682 0.05729777 

9.66667 25.782 0.1706617 0.05689639 

10.58333 27.27 0.16134947 0.05726347 

10.7 27.488 0.16006985 0.05720737 

11.36667 28.574 0.15398614 0.05734023 

12.13333 30.038 0.14648112 0.05678799 

13.03333 31.162 0.14119761 0.05772985 

13.18333 31.49 0.1397269 0.05748428 
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EXAMPLE 1 

Determine the discharge coefficient dC of the device represented by Figure 1, 

characterized by the widths ratio / 2B b = . 

SOLUTION 

Applying relations (26), (27), and (28) results respectively in: 

( )
2/3* 1 2

1;1

1 1
/ cos cos 1 2( / )

3 2
h B b B b− −   = − +     

  

( )
2/3

1 21 1
2 cos cos 1 2 ( 2) 1.72108416 1.721

3 2

− −   =  −  + =      
 

( )
2/3* 1 2

1;2

1 1
/ cos cos 1 2( / ) 240

3 2
h B b B b− −   = − +  +     

          

( )
2/3

1 21 1
2 cos cos 1 2 ( 2) 240 0.62996053 0.630

3 2

− −   =  −  +  + =      
 

( )
2/3* 1 2

1;3

1 1
/ cos cos 1 2( / ) 120

3 2
h B b B b− −   = − +  +     

          

( )
2/3

* 1 2
1;3

1 1
2 cos cos 1 2 ( 2) 120 0.46116311 0.461

3 2
h − −   =  −  +  + = −  −     

 

As mentioned before, 
*
1h must be greater than 1. It is therefore the first solution that must 

be retained, namely: 

*
1 1.72108416 1.721h =   

According to Eq. (34), the discharge coefficient dC is as: 

*3/2 3/2
1

0.6975 0.6975
0.30891646 0.309

1.72108416
dC

h
= = =   
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PHYSICAL MEANING OF THE DIMENSIONLESS PARAMETER 
*
1h  

To give the physical meaning of the dimensionless parameter
*
1h , let us recall for this the 

relation which governs the Froude number. This is written in section 1-1 of the device 

input as: 

2
2

1 2 3

1

Q
F

gB h
=         (37) 

Inserting Eq. (1) into Eq. (37) results in: 

3

12

1 3 3

1 1 1

1

( / )

c

c

h
F

h h h
= =         (38) 

Taking into account Eq. (13), Eq. (38) becomes: 

3

12 * 3

1 13

1

ch
F

h
h

−= =           (39) 

Thus: 

* 2/3

1 1Fh −=       (39a) 

It is thus demonstrated that the dimensionless parameter 
*
1h is closely related to the 

Froude number of the incident flow in the device. 

Inserting Eq. (39a) into the fundamental relationship (15), yields: 

2 4/32/3
1 1

3 1
( / ) 0

2 2
F B b F

− −
− + =         (40) 

After some rearrangements, Eq. (40) is reduced to: 

2 2/32/3
1 13( / ) 2 0F B b F− + =       (40a) 

This is the relationship between the Froude number of the incident flow to the widths 

ratio /B b .  

Let us assume the following change in variables: 

2/3

1X F=         (41) 
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Combining Eqs. (40a) and (41) results in: 

3 2/3
3( / ) 2 0X B b X− + =           (42) 

One thus obtains a third degree equation in X, without second order, which can be solved 

according to the method described above. Taking into account the change in variables 

expressed by equation (41), one will obtain the relation of the Froude number of the 

incident flow as a function of the widths ratio /B b . As the flow at the entrance of the 

device is in subcritical regime, the incident Froude number 1F must be less than 1. 

Eq. (42) is in the following form: 

3 2 0X aX bX c+ + + =       (42a) 

Where: 0a =  ; 
2/3

3( / )B bb = − , and c = 2. 

Let us assume the following parameters: 

2 2/3
2/33 3 3( / )

( / )
9 9

b a B b
H B b

− 
= = − = −           (43) 

39 27 2 27 27 2
1

54 54 54

ab c a c
R

− − − − 
= = = = −            (44) 

Let's find the angle  such that: 

( )
1

3 2

1
cos /

( / )

R
B b

H B b


−
= + = − = −

−
          (45) 

That is: 

( )
11cos /B b
−−  = −

      (45a) 

The discriminant of equation (42a) is expressed as: 

3 2H R = +           (46) 

Inserting Eqs. (40) and (41) into Eq. (21) and rearranging, one may obtain: 

( ) ( )( )
2

1 / 1 / 1 /B b B b B b  = − = − +
 

                     (46a) 

Eq. (46a) shows that the discriminant  is equal to zero in the case where B / b = 1. The 

study is focussed on cases where the ratio B / b is greater than 1, which means that  is 

negative according to Eq. (46a). In this case, Eq. (38) has three real roots which are given 

as:  
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1 2 cos( / 3) / 3X H a= − −         (47) 

2 2 cos( / 3 240 ) / 3X H a= − +  −         (48) 

3 2 cos( / 3 120 ) / 3X H a= − +  −           (49) 

Whence: 

( )
1/3 1 1

1

1
2 / cos cos ( / )

3
X B b B b− −   = −     

              (47a) 

( )
1/3 1 1

2

1
2 / cos cos ( / ) 240

3
X B b B b− −   = − +      

               (48a) 

( )
1/3 1 1

3

1
2 / cos cos ( / ) 120

3
X B b B b− −   = − +      

               (49a) 

Taking into account the change in variables expresses by Eq.  (41), the three solutions in 

1F are: 

( )
3/2

1/3 1 1
1;1

1
2 / cos cos ( / )

3
F B b B b− −   = −     

        (50) 

( )
3/2

1/3 1 1
1:2

1
2 / cos cos ( / ) 240

3
F B b B b− −   = − +      

        (51) 

( )
3/2

1/3 1 1
1;3

1
2 / cos cos ( / ) 120

3
F B b B b− −   = − +      

        (52) 

EXAMPLE 2 

Compute the incident Froude number 1F of the flow in the device inlet section 1-1 

indicated in Figure 1 for the widths ratio / 2B b = . 

SOLUTION 

Applying Eqs. (50), (51), and (52) results respectively in: 

( )
3/2

1/3 1 1
1;1

1
2 / cos cos ( / )

3
F B b B b− −   = −     
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Whence: 

( )
3/2

1/3
1 1

1;1

1
2 2 cos cos ( 2) 2

3
F − −   =   − =     

 

( )
3/2

1/3 1 1
1:2

1
2 / cos cos ( / ) 240

3
F B b B b− −   = − +      

 

Hence: 

( )
3/2

1/3
1 1

1:2

1
2 2 cos cos ( 2) 240 0.44289098 0.443

3
F − −   =   − +  =      

 

( )
3/2

1/3 1 1
1;3

1
2 / cos cos ( / ) 120

3
F B b B b− −   = − +      

 

Thus: 

( )
3/2

1/3
1 1 3/2

1;3

1
2 2 cos cos ( 2) 120 ( 2.16843016)

3
F − −   =    − +  = −     

 

The first equation gives 1 2F = which does not correspond to the subcritical character of 

the flow in the inlet section of the device. The third solution is mathematically and 

physically impossible. The obtained value of X is negative, which does not conform to 

the physical meaning of the relation (41) where 1F must be positive. The second solution 

gives 1F < 1, which corresponds to the physical reality since the flow at the entrance of 

the device, i.e. section 1-1 in Figure1, is subcritical. Therefore, the solution to the problem 

is given by the second equation, i.e. 1 0.443F = . 

Note that when combining Eqs. (34) and (39a) one may write: 

10.6975dC F=           (53) 

Therefore, the discharge coefficient dC varies linearly as a function of the incident Froude 

number 1F . Considering the current case, Eq. (53) gives: 

10.6975 0.6975 0.44289098 0.30891646 0.309dC F= =  =   

This is obviously the same value computed in example 1. 
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CONCLUSIONS 

The study looked at a device for measuring the flow rate in a rectangular channel of width 

B. It is composed of a vertical thin plate with a central opening of width b, arranged 

perpendicular to the flow. The plate can be metallic, plastic or even concrete of the same 

type as that of the channel in which it is inserted. The device is therefore very simple to 

produce and to use. It is one of the simplest devices for measuring flow in an open 

rectangular channel. 

The study has rigorously shown that both the flow rate and the discharge coefficient of 

such a device can be drawn from a theoretical development. The result shows that the 

device is semi-modular since the flow rate depends both on its geometric characteristics, 

i.e. the widths ratio B/b, and on the upstream flow depth. Characterized by a flat floor, 

the device is therefore self-cleaning. 

Based on experimental tests given by the literature, it has been observed that the 

theoretical and experimental discharge coefficients deviate by only 2% at most. The 

theoretical discharge coefficient relationship has therefore been adjusted to be in 

accordance with the experimental observations.  

It is to be noted that the study concerned contraction rate  = b/B such as 0.15    0.45. 

The authors of the present study do not claim that the theoretical relationships derived 

herein are strictly applicable and extrapolated for contraction rates    1/2. The 

theoretical development must therefore be subjected to an intense experimental program 

involving devices characterized by such contraction rates. The influence of the 1/b h  

ratio could possibly be observed as mentioned by some authors for  = 1/2. 
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