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ABSTRACT 

The isentropic flow in the Laval nozzle has been the subject of investigations and 

theoretical development. In the literature, the flow parameters are expressed as a function 

of the Mach number M calculated in any cross-sectional area of the flow. In the present 

study, the flow parameters such as the cross-sectional area A related to the sonic cross-

sectional area A*, the mean velocity V of the flow and mass flow rate are expressed as a 

function of the flow conditions of the generator state. The important relationship between 

the Mach number M* in the sonic section versus the Mach number M in any cross-

sectional area of the flow in the nozzle is also presented. Its graphic representation makes 

it possible to discuss the behaviour of the flow in the nozzle. On the other hand, the normal 

shock zone has been examined from a theoretical point of view, the development of which 

has led to the relations which govern the flow parameters in this zone.  

The study first concerned the case where the velocity of the flow, subsonic upstream, 

becomes sonic in the narrowed section of the nozzle and for which the temperature, the 

pressure and the volume mass are critical. The flow immediately changes to supersonic 

and to become again further downstream in subsonic by the intermediary of a shock wave. 

For this case, a detailed numerical example is considered, showing the procedure to be 

followed to solve the problem. 

http://creativecommons.org/licenses/by/4.0
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Through a practical numerical example, the case where the flow remains subsonic over 

the entire length of its path is considered. It was introduced in this case study the concept 

of the cross-sectional area of the hypothetical section where the velocity would become 

sonic and where the temperature, pressure, and density would reach their critical values. 

The study ends with the examination of the borderline cases of the flow in the nozzle, as 

well as the criteria of classification of the flow. 

The most important established relationships are represented graphically and interesting 

conclusions are drawn. 

Keywords: Fluid mechanics, fluid flows, parameterization, compressible flow, Laval 

Nozzle, shock wave. 

RESUME 

L'écoulement isentropique dans la tuyère de Laval a fait l'objet d'investigations et de 

développements théoriques. Dans la littérature, les paramètres d'écoulement sont 

exprimés en fonction du nombre de Mach M calculé en tout point de l’écoulement. Dans 

la présente étude, les paramètres d'écoulement tels que l’aire de toute section A relative à 

la section sonique A*, la vitesse moyenne V de l’écoulement et le débit massique sont 

exprimés en fonction des conditions d'écoulement à l'état générateur. La relation 

importante entre le nombre de Mach M* dans la section sonique et le nombre de Mach M 

dans toute zone de section transversale de l'écoulement dans la tuyère est également 

présentée. Sa représentation graphique permet de discuter le comportement de 

l'écoulement dans la tuyère. D’autre part, la zone de l’onde de choc droite a été examinée 

d’un point de vue théorique dont le développement a mené aux relations qui gouvernent 

les paramètres de l’écoulement dans cette zone.  

L'étude a d'abord concerné le cas où la vitesse de l'écoulement, subsonique à l'amont, 

devient sonique dans la section rétrécie de la tuyère et pour laquelle la température, la 

pression et la masse volumique sont critiques. L'écoulement change aussitôt en 

supersonique et pour redevenir plus loin à l'aval en subsonique par l'intermédiaire d'une 

onde de choc. Pour ce cas, un exemple numérique détaillé est considéré, montrant la 

démarche à suivre pour résoudre le problème. 

A travers un exemple numérique pratique, le cas où l’écoulement reste subsonique sur 

toute la longueur de son trajet. Il a été introduit dans cette étude de cas le concept de l’aire 

de la section hypothétique où la vitesse deviendrait sonique et où la température, la 

pression et la masse volumique atteindraient leurs valeurs critiques. 

Les relations établies les plus importantes sont représentées graphiquement et des 

conclusions intéressantes sont tirées.  

Mots clés : Mécanique des fluides, écoulements des fluides, paramétrisation, écoulement 

compressible, Tuyère de Laval, onde de choc. 
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INTRODUCTION 

A nozzle is a passive mechanical component as an hourglass-shaped tube that places two 

reservoirs at different pressures in communication and whose profile must theoretically 

allow a reversible adiabatic flow. The nozzle profile must therefore be such that it exactly 

dresses the flow vein. Thus, for example, if the pressure varies in the nozzle from the 

value 1P  (Figure 1) to a zero value in the direction of flow, the profile must be convergent, 

and then diverge and the outlet section must be infinite. The entry section will itself be 

infinite if the entry velocity is zero (Figure 1). 

 

Figure 1: Characteristics of the flow in the Laval nozzle for some cross-sectional 

areas 

The Laval nozzle is used to accelerate hot, pressurized gases that pass through it until 

they reach supersonic velocity. The nozzle optimally converts the heat of the gases into 

kinetic energy. It makes it possible to produce large amounts of energy from combustion 

gases. Laval nozzles are used in rocket engines, steam turbines and gas turbines. In the 

case of a rocket engine, this type of nozzle plays a fundamental role in optimizing thrust 

by maximizing the velocity of gas ejection. 

In practice, the theoretical flow conditions are never observed and, in particular, the 

viscosity of the fluid is not zero, which leads to irreversibilities. Depending on the 

expansion rate used, the nozzles are either simply convergent for high expansion rates 

δ>δ0, or convergent-divergent (Figure 1) when the expansion rates are less than δ0 

(Lallemand, 2020). They are then called Laval nozzles in homage to Carl Gustaf Patrik 

de Laval (1845-1913). In a Laval nozzle, the pressure varies from a high pressure 1P  to 

an outlet pressure which can be relatively low. 

In the Laval nozzle, the diameter begins by reducing in the direction of gas circulation, 

then increases again. It comprises three parts namely: the convergent which is the part of 

the nozzle which narrows, the throat is the cross-sectional of the nozzle where the 

diameter is minimum, and the divergent whose diameter increases again (Li, 2008). 

For a Laval nozzle to accelerate gases optimally, it is necessary that the convergent and 

the divergent (which are not symmetrical) have very precise shapes and that the diameter 

of the throat takes a given value. All these parameters are determined from the 

2

2

1P

1T

1

1A = 

1 0V =

'A

'P

'T

'

'V

*T

*P

*

*V

''A

''P

"T

"

"V

Subsonic regime Supersonic régime



Achour B. & Amara L. / Larhyss Journal, 45 (2021), 35-94 

38 

characteristics of the incoming gas (pressure, temperature, flow rate, molecular mass) and 

from the external pressure. 

The principle of operation of a Laval nozzle is based on the properties of gases when they 

circulate at subsonic and supersonic velocities. When gas flows at a subsonic velocity 

through a pipe with a narrowing diameter, its velocity increases. However, the velocity 

of gas cannot exceed that of sound, i.e. Mach number equal to1. In fact, in a supersonic 

flow regime, i.e. the velocity greater than the velocity of sound, the behaviour of the gas 

is reversed: for its velocity to increase, the diameter of the pipe must increase as shown 

by the Hugoniot relationship (Comolet, 1969; Landau and Lifchits, 1987). To accelerate 

a gas to supersonic velocity, it is therefore necessary that it first circulate in a converging 

section of pipe until it reaches the velocity Mach 1 in the throat section and from this 

section the gas must progress in a pipe of increasing diameter,  the expanded part, so that 

the velocity continues to increase. The Laval nozzle only works according to this principle 

if the gas velocity reaches Mach 1 velocity at the throat. To achieve this, the nozzle must 

be designed so that the outlet pressure is at least two times lower than that at the inlet. If 

this condition is met, the velocity at the throat reaches Mach 1 and the nozzle is said to 

be primed. If the outlet pressure is greater than this value, the nozzle will not prime. On 

the contrary, if the pressure ratio is greater, the yield increases. This is optimal when the 

outlet pressure is equal to the ambient pressure (at ground level, i.e.1 bar): we then say 

that the nozzle is suitable. For a rocket engine, the cross--sectional area ratio of the 

expanded part must therefore be all the more important when the engine operates at high 

altitudes, that is to say at low ambient pressures (Anderson Jr., 1991). 

In the Laval nozzle, the flow is isentropic, i.e. the entropy is constant, a consequence of 

the assumption that it is a non-viscous fluid and that the process is adiabatic, i.e. there is 

no heat exchange between the fluid and the nozzle. The gas which circulates in the nozzle 

is compressible. Several relationships can be established to define the pressure, density 

and temperature of the isentropic flow of an ideal gas. They are often called isentropic 

relations. The characteristics of the flow in the nozzle, generally related to those of the 

flow at the inlet of the nozzle, are expressed as a function of the Mach number M. 

Although their values are tabulated, the reference literature that the authors consulted 

does not indicate clearly relationships expressing the ratio of the cross-sectional areas 

A/A* as a function of the ratios of temperatures T/T1, of the ratio of densities /1 and of 

the ratio of pressures P/P1, where A is any cross-sectional area, A* is the sonic cross-

sectional area and  is the density of the gas (Figure 1). The characteristics having the 

index "1" are those referred to the inlet of the nozzle. All of these relationships, among 

others, will be established in this study, including the important relationship that links the 

Mach number M* in the throat to the Mach number M at any point.   

The study will focus in particular on the flow in the presence of a normal shock wave in 

supersonic conditions. The study will not focus on the shock zone itself (Azdasher, 2012; 

Comolet, 1985; Candel, 1995). 

All the important established relationships will be represented graphically and interesting 

conclusions will be drawn. 
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FUNDAMENTAL RELATIONSHIPS 

The ideal gas law can be written as (Oswatitsch, 1956): 

P
gRT


=

           (1)    

Where P (Pa or kg.m-1.s-2) is the pressure,  is the density (kg.m-3), g is the acceleration 

due to gravity (m.s-2), R is the universal ideal gas constant which is expressed in relation 

(1) in the units m/°K (meters by degrees Kelvin) and T is the absolute temperature (°K). 

Some authors prefer to use the following ideal gas relationship: /P RT =  and in this 

case the constant R is expressed in J.K-1.mol-1. The universal ideal gas constant R is related 

to the molar mass M of the gas by the following relation: 

848

M
R =

           (2)    

The isentropic laws governing the characteristics of the gas are such as (Rathakrishnan, 

2019): 
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In these relations the constant k is a characteristic of the gas. It is called the adiabatic 

constant or Laplace coefficient and sometimes the compressibility coefficient. It is often 

indicated in the literature by the symbol . It has no unity because it is expressed by the 

ratio between the specific heat at constant pressure cp and the specific heat at constant 

volume cv. For monoatomic gases: (5 / 2) / (3 / 2) 1.67k =  , for diatomic gases:

(7 / 2) / (5 / 2) 1.4k = =  and for polyatomic gases: 1.3k  . 

The continuity equation is expressed as: 

1 1 1
constant

n n n
V A V A V A  = = =

            (5) 
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Where V (m.s-1) is the average velocity of the flow and A (m2) is the cross-sectional area. 

The subscript "n" denotes any vertical section n-n. Eq. (5) expresses the mass flow rate 

denoted m
•

. 

The energy equation per unit mass of frictionless isentropic compressible flows is given 

by the following relation (Zucrow and Hoffman, 1976): 

2 2

1 1

1 1

1
2 1 2 1

V P Vk k P
gz gz

k k
 

 
+ + = + +

− −                          (6a) 

z is the position of the center of gravity of the considered section, with respect to a 

horizontal reference plane. 

The energy per unit weight equation of frictionless isentropic compressible flows is 

written as: 

2 2

1 1

1 1

1
2 1 2 1

V P Vk k P
z z

g k g g k g
 

 
+ + = + +

− −                        (6b) 

The equation of energy per unit mass of isothermal compressible flows is: 

2 2

1

1 1 1
log ln

2 2

V V
gz gRT P gz gRT P E + + = + + + 

                         (6c) 

E is the loss of mechanical energy per unit mass converted into heat. Generally: 1z z=  

and 
1

1 = =  

Eq.(6a) then becomes: 

2 2

1 1

1
2 1 2 1

V P Vk k P

k k − −
+ = +

                        (6d) 

The actual or hypothetical sonic velocity passing through the nozzle is: 

1

1

1

*

2 2

1 1

Pk k
gRT

k k
c

+ +
= =

                         (7) 

Relation (7) was obtained by the authors by considering the temperature ratio 

1 / ( ; )T T f k M= given by the literature where the Mach number M = 1 and *T T=  

representing the temperature in the narrowed section of the nozzle. Relation (8a) below 

follows from these considerations. 
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Critical ratios of gas characteristics are (Rathakrishnan, 2019): 

*
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By taking into account relation (7) and relations (8), it can be seen that the value *c of the 

sonic velocity as well as the critical values *P , *T  and *  corresponding respectively to 

the pressure, the absolute temperature and the density are well determined by the only 

conditions upstream of the flow in the nozzle and whose characteristics have the index 

"1". 

The equation of momentum applied to the shock zone, assuming on the one hand that the 

momentum correction factor is 1 = and on the other hand the thickness of the shock 

zone is very small, i.e. 
3 4

AA = , is written as: 

2 2

3 4 4 4 3 3
P P V V − = −

                     (9) 

CONDITIONS IN THE REDUCED SECTION 

The flow regime passing through the narrowed section 2-2 of Figure 1 is: 

1. Sonic, if the ratios 
2 1

/T T , 
2 1

/P P  and 
2 1

/  are identified with the critical ratios 

defined by equations (8a); (8b) and (8c). 

2. Subsonic, if the following ratios
2 1

/T T , 
2 1

/P P , and 
2 1

/  have values greater than 

the critical ratios. In this case, the flow retains its subsonic character all along the nozzle, 

in the convergent, in the constricted section and also downstream thereof. 

FLOW VELOCITY RELATIONSHIPS 

To determine the relations governing the flow velocity V in any arbitrarily chosen section 

of an isentropic, subsonic or supersonic flow, equation (6a) must be applied between the 
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chosen section and section 1-1. The velocity in section 1-1 being such that
1

0V = and 

knowing that 1z z= , equation (6a) becomes: 

2

1

1
1 2 1

P Vk k P

k k − −
= +

                       (6d) 

Taking into account Eq. (1), the previous equation (6d) becomes: 

2

1
1 2 1
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gRT gRT

k k− −
= +

 

Hence: 

1 1

2
1 /

1
( )

k
V gRT T T
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       (10a) 

Or, taking into account equation (4a), one gets: 
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Considering Eq.(4c), one may then write: 
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MASS FLOW RATE RELATIONSHIPS 

Taking into account the continuity equation expressed by relation (5) as well as equations 

(4a), (4b) and (4c), we can deduce that the mass flow rate is expressed by the following 

equations: 
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( )
( 1)

1 1
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k
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•
−
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−

                          (11c) 

We can form the dimensionless number M
•

such that: 

( )

1/ ( 1)

1 1

11 1

2
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1

k
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T T T T

T kA gRT



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  (11d) 

It can therefore be seen that the relative mass flow rate increases with the decrease of the 

cross-sectional area A, which is the case with the converging part of the nozzle. 

Conversely, the relative flow rate decreases when A increases, which is the case with the 

expanded part of the nozzle. It is therefore logical to assume that the relative mass flow 

passes through a maximum. 

The in-depth study of the relation (11d) as well as its graphical representation (Figure 2) 

showed that, for k = 1.4, M
•

increases up to a maximum as 1/T T decreases. This can be 

seen on the right branch in Figure.2. It variation begins from zero value for 1/ 1T T = . 

The calculation has shown that maxM 0.68473146 0.685
•

=  for 1/ 5 / 6 0.8333T T = = . 

This value corresponds to the value of the critical temperature ratio 1* 2 / ( 1)/T T k= +

expressed by the relation Eq. (8a) for k =1.4. This therefore means that, for diatomic 

gases, if 1* 5 / 6T T= , then the relative mass flow rate M
•

is maximum. Just as we can 

show, through the study of relations (11b) and (11c), that M is maximal when 

1* 0.5283P P  and
1* 0.634  . The relative mass flow rate decreases from the 

maximum until reaching zero for 1/ 0T T = , as shown on the left branch of the curve in 

Figure3. Finally, one may write what follows: 

* 1 1max 0.685m gRTA 
•


      (11e) 

To find the result 1 2 / ( 1)/T T k= + , write 
1

/ ( / 0)M T Td
•

= in Eq. (11d). After 

derivation, it comes that: 

( ) ( ) ( )
11 1 1
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After some simplifications and rearrangements, one may get: 
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1 1
12

/ 1 / 1
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It is then easy to show that: 

1/ 2 / ( 1)T T k +=
 

Inserting the previous result into Eq. (11d) result in: 
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For k =1.4, Eq. (11f) gives maxM 0.68473146 0.685
•

=  . 

According to the definition of the relative mass flow rate, one may write: 

1 1
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gRTk A
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
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+

−

=
+

 
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                       (11g) 

This is the general relationship of the maximum mass flow rate. The maximum mass flow 

rate is reached when the gas velocity reaches sonic velocity in the throat section of the 

nozzle. Under these conditions the flow is choked (Thermopedia, 2020). The throat size 

is chosen to choke the flow and set the mass flow rate through the system. The flow in 

the throat is sonic which means the Mach number is equal to one in the throat. 

 

Figure 2: Variation of the relative mass flow rate as a function of the temperature 

ratio according to Eq. (11d). 
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NOTE 

The right branch of the curve in figure (2) reflects the variation in the relative mass flow 

rate in the converging part of the nozzle, while the left branch concerns the expanded part 

of the nozzle. The symbol (•) on the x-axis correspond to the sonic section where the 

temperature ratio 1/T T reaches the critical temperature ratio expressed by Eq. (8a). 

According to Eq. (11d), the relative mass flow rate is as: 

1 1

M
m

A gRT

•

•

=
       (11d) 

The previous equation can be rewritten is the following form: 

1* 1
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/
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Finally, one may write: 

max
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/
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A A

• •

•
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       (11i) 

As the mass flow rate is constant, i.e. max 1/m m
• •

= , Eq. (11i) reduces to: 

*

0.685
M

/A A

•

=
        (11j) 

Therefore, the relative mass flow rate reaches the value 0.685, as previously determined, 

when the cross-sectional area ratio */A A is equal to unity. The cross-sectional area A 

corresponds to the cross-sectional area of the throat.  

CROSS-SECTIONAL AREA RELATIONSHIPS 

Likewise, by applying the continuity equation expressed by relation (5) to the narrowed 

section and taking into account the relation (11a), it comes that: 
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From one we can deduce the cross-sectional area of the narrowed section, after taking 

into account relations (7) and (8c), such as: 

( )
1 1 1
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By squaring the two members of the equation and after some simplifications, it follows 

that: 

1

1 1

2/( 1)

2

2/( 1) ( 1)/( 1)

*

1 2

1 1
( / )

T

k

k k k

k

k k
T T

T T

T T

A

A


−

− + −

−

+ +
=

−

=

  
      

 
    
   
   

                  (12a) 

It is thus observed that the ratio A/A* depends only on the temperature ratio T/T1. If one 

replaces in relation (12a) the temperature ratio T/T1 by the critical ratio T*/T1 given by 

relation (8a), it will find that A/A*=1 which corresponds to the area of the sonic section. 

Conversely, according to relation (12a), the condition A/A*=1 can only be satisfied if 

T/T1= T*/T1=2/(k+1). Equation (8a) is then reproduced. Likewise, if we replace in relation 

(10a) the ratio T/T1 by the critical ratio T/T1=T*/T1=2/(k+1), one ends up with the equality 

V = *c  and the relation (7) is then reproduced. 

Let us take the case of diatomic gases whose adiabatic constant is: 

(7 / 2) / (5 / 2) 1.4/p vk c c = ==
 

The relation (12a) becomes: 
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1 1

2

5 6

*

0.0669796A

A T T

T T

=

−

 
 

    
   
   

 

Its graphic representation is shown in Figure 3. 

 

Figure 3: Variation of 
* 1

/ ( / )A A f T T= according to equation (12a) in the case of a 

diatomic gas with adiabatic constant k = 1.4. (•) Sonic section corresponding to 

* 1
5 / 6 0.8333/T T = . 

There are two cross-sectional areas: in the first one the flow is subsonic (converging part) 

and in the second the flow is supersonic (expanded section). For these two cross-sectional 

areas, correspond two different ratio values of T/T1. One can also see that the curve passes 

through a minimum which corresponds to T/T1= T*/T1=5/60.8333 and to A/A*=1. These 

are the characteristics of the sonic section. The value T/T1= T*/T1=5/6 can be obtained by 

applying relation (8a) for k = 1.4. 

Taking into account equation (4c), relation (12a) becomes: 

1

2

2/

*

1 1

2/( 1)

( 1)/

1 2

1 1
/ )(

pk

k

k k

k

A k k
P P

A P P

P P



−

+

−

+ +
= =

−

  
      

 
    
   
   

        (12b) 

Relation (12b) clearly shows that the section ratio A/A* only depends on the pressure ratio. 

One can show that in relation (12b), the condition A/A* =1 corresponding to the sonic 

section is satisfied for the critical ratio  
/( 1)

1 * 1
/ / 2 / ( 1)

k k
P P P P k

−
+= = . 
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In the case of diatomic gases for which k = 1.4, the critical pressure ratio is therefore 

* 1
0.52828179/P P = . 

The relation (12b) has been represented graphically in Figure 4 for the case of diatomic 

gases with adiabatic constant k = 1.4.  

For this value, relation (12b) is written as: 

2

10/7 12/7

*

1 1

0.0669796A

A P P

P P

=

−

 
 

    
   
   

 

 

Figure 4: Variation of 
* 1

/ ( / )A A P Pf= according to equation (12b) in the case of a 

diatomic gas with adiabatic constant k = 1.4. (•) Sonic section 
* 1

0.5283/P P   

So, there are two sections: in the first one the flow is subsonic (converging part) and in 

the second one the flow is supersonic (expanded part). These two sections correspond to 

different ratio values of
1

/P P . One can also see that the curve passes through a minimum 

which corresponds to 
1 * 1

/ / 0.52828179P P P P=   and to
*

/ 1A A = , as it has had been 

already mentioned previously. These are the characteristics of the sonic section or 

narrowed section of the nozzle. 

Taking into account Eq. (4a), Eq. (12b) becomes: 

2

12

*

1 1

2/( 1)

( 1)

1 2

1 1
( / )

k

k

k

A k k

A


  

 

 

−

+

−

+ +
= =

−

  
      

 
    
   
   

          (12c) 
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Relation (12c) thus expresses the ratio */A A  of the sections as a function of the density 

ratios 
1

/   exclusively. One can show that, in relation (12c), the condition 
*

/ 1A A =

corresponding to the sonic section is satisfied for the critical ratio 

 
1 * 1

1/( 1)
2/ / ( 1)/

k
k  

−
+= = and the relation (8c) is then reproduced. In the case of 

diatomic gases for which k = 1.4, the critical ratio of the densities is therefore

* 1
0.63393815/  = . 

For this type of gas, the relation (12c) is written as: 

2

2 2.4

*

1 1

0.0669796A

A  

 

=

−

 
 

    
   
   

 

This relationship is illustrated graphically in Figure 5 

 

Figure 5: Variation of 
* 1

// ( )A A f  =  according to equation (12c) in the case of a 

diatomic gas with adiabatic constant k = 1.4. (•) Sonic section 
* 1

0.634/    

There are thus two sections: in the first one the flow is subsonic (converging) and the 

other where the flow is supersonic (expanded section). For these two sections correspond 

two different ratio values of
1

/  .  

It can also be seen that the curve passes through a minimum which corresponds to 

1 * 1
0.634/ /    =  and to 

*
/ 1A A = corresponding to the sonic section. 
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MIXED FLOW WITH NORMAL SHOCK WAVE 

Mach number M* in the throat 

The flow of a gas passing through the nozzle represented by figure 6 undergoes 

acceleration in the convergent but remains subsonic upstream of the narrowed section 2-

2, then it can become sonic in this section or in a fictitious or hypothetical section 

downstream. The flow then changes to supersonic immediately downstream of section 2-

2 and is accelerated between sections 2-2 and 3-3. A shock wave occurs between sections 

3-3 and 4-4 beyond which it remains subsonic and decelerates. Parametric relationships 

in the shock zone will be established and exposed by the authors in the following section  

 

Figure 6: Definition sketch of different cross-sectional areas in the Laval nozzle 

The physical laws expressed by relations (1) and (2) as well as the continuity equation (5) 

are valid in all sections of the flowing gas passing through the nozzle. Isentropic relations 

(3) and (4), applicable in any section between 1-1 and 3-3 and between sections 4-4 and 

6-6, are not valid between sections 3-3 and 4-4 that are the geometrical locus of the shock 

zone.  

To find a solution to the problem exposed above, having a general validity, one must 

establish the value of the following parametric relations
2

*/( )nV c , 
2

*/( )nA A , 
1

/
n

T T , 

1
/

n
P P  and 

1
/

n
  , in each of the sections 1-1,2-2,… 6-6. It is also necessary to specify 

the relations giving the value of the following parametric relations: ( )
2

*
/V c , 

2

*/( )A A

, 
1

/T T , 
1

/P P  and 
1

/   in any section of each of the following zones 1-2, 1-3, 3-4, and 

4-5. 

In section 1-1, one can write, for obvious reasons: ( )
2

1 *
0/V c = , ( )

2

1 *
/A A =  , 

1 1 1 1 1 1
/ / / 1T T P P  = = = . In any section intersecting the upper isentropic zone 1-3, by 

applying the energy equation (6b) between section 1-1 and any other arbitrarily chosen 

section, one may write when taking into account the relation (1): 

1

1

I

I
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*

*

II

II
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2

1

2 2

1 1

k k
V gRT gRT

k k
+ =

− −  

Hence: 

1 1

2 2
(1 / )

1

k
V gRT T T

k
−

−
=

 

By multiplying the right-hand side of the previous equation by the quantity (k + 1) / (k + 

1) and dividing by the equation (7) squared, it comes out that: 

1

*

2

1
(1 / )

1

V k
T T

c k

+
= −

−

 
 
 

        (13a) 

For *V V= , on may recognize, in the left-hand side of the previous equation, the Mach 

number
* * */M V c= in the throat, that is: 

2

* 1

1
(1 / )

1

k
M T T

k

+
= −

−                      (13b) 

For diatomic gases with a compressibility coefficient k = 1.4, relation (13b) indicates that 

for
1

0/T T = ,
*

6 2.45M = , while for 
1

/ 1T T = , one gets
*

0M = . One can also note 

that for 
1

/ 5 / 6 0.83333T T = = , the Mach number 
*

M  is such that 
*

1M = , indicating 

that the flow becomes sonic in the narrowed section of the nozzle or in a fictitious or 

hypothetical sonic section downstream of the narrowed section as it is shown in Figure 7 

of the discussion section. 

Taking into account Eq.(4c), Eq.(13a) can also be written in the following forms: 

2

* 1

( 1)/1
1 ( / )

1

k kk
M P P

k

−+
−

−
=                           (13c) 

2

* 1

( 1)1
1 ( / )

1

kk
M

k
 

−+
−

−
=            (13d) 

The literature gives the following ratios 
1

/T T , 
1

/P P and 
1

/  as a function of the 

Mach number M (Rathakrishnan, 2019). The temperature ratio 
1

/ ( )T T f M= is such 

that: 

2

1

1
/ 1

2

k
T T M

−
= +

          (14) 
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By combining relations (13a) and (14), it is easy to show that: 

2

2*

( 1)

2 ( 1)

k M
M

k M

+

+ −
=

          (15) 

One thus obtains the functional relationship
*

( ; )M f k M= . For diatomic gases with a 

compressibility coefficient k = 1.4, relation (15) becomes 

2

* 2

2.4

2 0.4

M
M

M+
=

        (16) 

Note some particular values such as * 0M = for 0M = and * 1M = for 1M = . 

Relation (16) has been represented graphically in figure 7. 

 

Figure 7: Variation of the Mach number *M as a function of the Mach number M 

according to equation (16) valid for diatomic gases (k = 1.4) 

Figure 7 shows that when M increases, *M  also increases but this increase is only relative 

beyond the value of the Mach number M = 1. In the range 0 < M <1, the Mach number 

*M  also varies in the range 0 < *M <1 but with values slightly higher than those of M. 

When the flow is sonic corresponding to M = 1, the flow in the narrowed section remains 

sonic with *M =1. During the supersonic flow corresponding to M > 1, the flow in the 

narrowed section also remains supersonic with *M  > 1. It can be concluded that the flow 

regime does not change when passing from the convergent to the narrowed section. 

However, for values of M < 1 corresponding to a subsonic flow in the convergent, there 

is a fictitious or hypothetical sonic section that can be obtained by extending the 

convergent over a certain distance as shown in figure 7 of the discussion paragraph. All 

of the flow parameters in this fictitious or hypothetical sonic section are marked with the 

index "*". 
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Parametric relations in the shock zone 

As mentioned above, isentropic relations (3) and (4), applicable in any section between 

1-1 and 3-3 and between sections 4-4 and 6-6, are not valid between sections 3-3 and 4-

4 that are the geometrical locus of the shock zone (Figure 6).  

By applying the continuity equation (5) to sections 3-3 and 4-4 and assuming that the 

distance between these two sections is small, it comes that: 

3 4
A A=

  

4 4 3 3
V V =

           (5) 

For the same reasons, the momentum equation applied to the said sections is reduced to: 

2 2

3 4 4 4 3 3
V VP P  − = −

                         (9)       

Combining Eqs. (5) and (9) results in: 

3 4

4 3

3 3 4 4

P P
V V

V V 
− = −

                        (23) 

On the other hand, by applying the energy equation (6) between a cross-sectional area 

arbitrarily chosen and the sonic cross-sectional area, one can write: 

2 2 *

*

*

2 2

1 1

Pk P k
V

k k
c

 − −
+ = +

 

Taking into account Eq. (7), the previous equation becomes: 

2 2 2

* *

2 2

1 1

k P
V

k k
c c


+ +

− −
=

 

That is to say: 

2 2

*

2 1

1 1

k P k
V

k k
c



+
+ =

− −  

Whence: 

2 2

*( 1) ( 1)

2

k k VP

k

c



+ −
=

−

          (24) 
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Applying Eq. (24) to the cross-sectional areas 3-3 and 4-4 results in: 

2 2

3 3

3

*( 1) 1)

2

(P k k V

k

c



+ −−
=

       (24a) 

2 2

4 4

4

*( 1) ( 1)

2

P k k V

k

c



+ −−
=

        (24b) 

Eliminating 
3 3

/P  and 
4 4

/P  between equations (23), (24a) and (24b), it follows that: 

2 2 2 2

3 4

4 3

3 4

* *
( 1) ( 1) ( 1) ( 1)

2 2

V V
V V

V V

k c k k c k

k k

+ − − + − −
− = −

 

After some arrangements, the previous relation reduces to: 

( )
2

4 3 4 3

3 4

*1 1

2 2

k k
V V V V

k V V k

c+ −
− + = −

 
 
 

 

This last equation is satisfied if 
4 3

V V= , that is, if there is no shock wave. The equation 

is also satisfied if: 

2

3 4

*1 1
1

2 2V V

ck k

k k

+ −
+ =

 

That is to say if: 

2

3 4

* 1
V V

c
=

   

Or: 

2

3 4 *V V c=
         (25) 

One can thus recognize Prandtl's relation (Ma and Wang, 2005).  

From relation (25) one can deduce that: 

4

3

*

*

V

V

c

c
=

 

Applying Eq. (13a) to the cross-sectional area 3-3 and taking into account the previous 

relation, it follows that: 
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( )
3 1

2

4

*

1

( 1) 1 /

V k

k T Tc

−

+ −
=

 
 
 

          (26) 

By introducing relations (4c) into Eq. (26), it comes that: 

3 1

2

4

( 1)/

*

1

( 1) 1 ( / )
k k

V k

k P Pc
−

−

+ −
=

 
 

    
       (26a) 

And: 

3 1

2

4

( 1)

*

1

( 1) 1 ( / )
k

V k

kc  
−

−
=

+ −

 
 

    
        (26b) 

On the other hand, Eq. (5) allows writing that: 

4 3 3 4
/V V =

        (5a) 

While Eq. (25) gives: 

2

4 3* /V Vc=
        (25a) 

Introducing Eq.(25a) into Eq.(5a) results in: 

2 2

4 3 3 */V c =
                        (27) 

Dividing Eq. (27) by 1  results in: 

2

3 34

1 1 *

V

c



 
=

 
 
                       (27a) 

Taking into account Eqs.(4a) and (13a), Eq.(27a) is reduced to: 

( )34

3 1

1 1

1/( 1)

1
1 /

1

k

T k
T T

T k





−

+
−

−
=
 
 
 

                      (28) 

Combining Eqs. (9), (5a) and (25a), on may write: 

2 2 2 2

3 4 3 3 3 3 3* * /( / ) ( )P P V V Vc c − = −
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After some simplifications, the previous relation reduces to: 

2 2

3 4 3 3*( )P P Vc− = −
          (29) 

On the other hand, taking into account Eqs. (4c) and (13a), one can deduce that: 

( )

2

1

1

*

1
1 /

1

kV k

kc
 

−+
−

−
=

 
    

 
                    (13b) 

Eq. (29) then becomes: 

( )2 2 2

3 4 3 3 1

1

* * *

1 1
/

1 1

kk k
P P

k k
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−+ +

− −
− = − +

 
    

Or: 

( )2 2

3 4 3 3 1

1

* *

2 1
/

1 1

kk
P P

k k
c c  

−− +

− −
− = +

 
    

Eliminating 
2

*c between Eq.(7) and the previous one, results in: 

( )1 1
3 4 3 3 1

1 1

12 2 1 2
/

1 1 1 1

kP Pk k k
P P

k k k k
 

 


−− +

− + − +

 
− = + 

 
 

Eliminating 
3

  between the last equation and equation (4b), it follows that: 

3 31

3 4 1 2

1 1 1

( 1)/1/
2

2 ( 1)
1

k kk
P PPk

P P k
P k P
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
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+ +− = −
−
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Whence: 

3 3 34
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1 1 1 1

( 1)/1/
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2 ( 1)
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P P PP k

k
P P P k P

−
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After some simplifications and rearrangements, one may obtain the following final result: 

3 34

2

1 1 1

1/
4 1

1 1

k
P PP k k

P k P k P

+

− −
= −

   
   
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                     (30a) 
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Eliminating 
3 1

/P P  between (30a) and (4a) results in the following equations: 

2

3 34

1 1 1

1/( 1) /( 1)
4 1

1 1

k k k
T TP k k

P k T k T

− −
+

− −
= −

   
   
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      (30b) 

4

2

3 3

1 1 1

4 1

1 1

k
P k k

P k k

 

 

+

− −
= −

   
   
   

                     (30c) 

According to Eq.(1): 

4 4 1

4

4 4 1

/

( / )

P P T

gRT gR T T
 = =

          (1) 

Whence: 

4 4 1

1 1 4 1

/

( / )

P T

gR T T



 
=

 

According to Eq.(1), one may write 
1 1 1

P gRT= . Thus, the previous equation becomes: 

4 4 1

1 4 1

/

( / )

P P

T T




=  4 1

4 1

4 1

/
/

/

P P
T T

 
=

 

Inserting Eqs. (28) and (30) into the previous equation and taking into account Eqs.(4), 

the following equations are obtained after some simplification and rearrangements: 

( )
3

2

14

31

1

4

1

1

Tk

TkT

TT

T

+
−

=

−
      (31a) 

Note some particular values given by Eq. (31a) for k = 1.4 such that: 

2
3 1 4 10.972222 0/ 4 / ( 1) /TT T k k T= + = =

, 

3 1 4 12 / ( 1) 0.833333 2 / ( 1) 0.833333/ /k T kT T T+ =  + == =
,  

corresponding to the critical temperature ratio expressed by Eq. (8a). 
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( )
3

2

14

( 1)/

1
3

1

( 1)/
4

1

1

k k

k k
Pk

PkT

T P

P

−

−

+
−

=

−

 
 
 

 
 
 

      (31b) 

( )
3

2

14

1

1
3

1

1
4

1

1

k

k
k

kT

T









−

−

+
−

=

−

 
 
 

 
 
 

      (31c) 

DISCUSSION 

Parametric formulas (12a), (12b) and (12c) are applicable to all isentropic flows. For this 

reason, these formulas have the character of general validity and can be applied without 

distinction to compressible flows, as long as their regime can be considered as isentropic 

without friction and without pressure loss. The subsonic or supersonic nature of the flow 

has no influence from the point of view of their applicability. 

The physical meaning of the real values of A*, P*, *, T* and c* is explained by figure 1 

which shows that it is the narrowed section 2-2 of the nozzle which constitutes the 

geometrical locus of the elements distinguished by the symbol "*". It is further noted that 

the ratio 
*

/A A  is, in all cases, greater than or equal to 1 and that each time the value of 

this ratio is greater than 1, there are two sections of the nozzle which correspond to it. 

One, intersecting the convergent, is the locus of a subsonic flow characterized by the 

pressure 'P , the density ' , the temperature 'T  and the velocity 'V . The other section 

intersects the divergent and is the locus of a supersonic flow characterized by the pressure 

"P , the density " , the temperature "T and the velocity "V  (Figure 1).  

These observations are in perfect agreement with relations (12a), (12b) and (12c) each 

having two real roots determining the values of 'P , "P , ' , " , 'T  et "T . In addition, 

they define, by applying the continuity equation, the corresponding values of the average 

velocities 'V and "V in the said sections. 

The physical significance of the hypothetical values A*, P*, *, T*, and c* is explained by 

considering figure 6. In the narrowed section of the nozzle, one can write. P2/P1>P*/P1. 

This implies, by virtue of relations (4) that 
2 1

/T T  > 
* 1

/T T  and that 
2 1

/   >
* 1

/  . This 
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allows us to write, taking into account relations (7) and (10) that V < *c . The flow is 

therefore subsonic. 

 

Figure 8: Characteristics of the flow in some sections of the Laval nozzle. * - * 

Fictitious or hypothetical sonic section obtained by the extension of the convergent 

If the convergence of the nozzle continued beyond section 2-2 of Figure 8 and if the 

decrease in ratios 
1

/T T , 
1

/P P and 
1

/  continued according to the law governing their 

variations upstream of section 2-2, these ratios would reach, in a hypothetical cross-

sectional area 
*

A A= , the values 
1 * 1

/ /P P P P= , 
1 * 1

/ /T T T T= , 
1 * 1

/ /   = and the 

velocity V would become sonic, i.e. *V c= . 

Applying the continuity equation expressed by relation (5), one can write: 

( )2 2 2 2 2 2

* 2 2
/ ( )A c A V =

 

By eliminating the quantity 
2 2

*
/V c  between this last equation and relation (13a), it comes 

that: 

( )
2 2

2

2 1

/1

1 1 /

A k

A k T T

 −

+ −
=

 
 
 

 

Taking into account relations (8c) and (4c), and the fact that the flow is really sonic in 

section 2-2, the above relation becomes: 

( )( )
2/( 1)

2

2/( 1) ( 1)/ ( 1)

*

1 1

1 2

1 1

k

k k k

k

k k

T T

T T

A

A

−

− + −

−

+ +
=

−

 
 

    
   
   

        (12a) 

2

2

1P

1T

1

1A = 

1 0V =

T

P



V

A

*

*

*P

*T

*

*c

*A2P

2T
2

2V

2A
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Relation (12a) is thus reproduced. This clearly shows that relations (12a), (12b) and (12c) 

are valid for any section of the flow slice between sections 1 and 3. This is moreover quite 

evident from the fact that the flow remains isentropic along the entire length of this slice. 

For this same reason, the parametric ratios
1

/T T , 
1

/P P  and 
1

/   follow the isentropic 

law expressed by equations (4a), (4b) and (4c). 

The five parametric relationships that we have established and which express the 

following ratios:  

2 2

1 1* * / /( / ) , ( / ) , ,V A A T T P Pc
 , and 1

/ 
  

are not independent of each other. It suffices for one of them to be known to deduce the 

other four. 

Regarding the parametric relationships in section 6-6 of figure 5, downstream of the 

nozzle outlet, they can be determined by applying the energy equation (6) between 

sections 4-4 and 6 -6. This allows writing, with the aid of Eq.(1), that: 

2

4 4 6

2 2

1 1

k k
V gRT gRT

k k− −
+ =

        (32) 

Whence: 

2

6 4 4

1

2

k
T T V

kgR

−
= +

      (32a) 

We know that 
4

T is given by relation (31a), 
4

V  by relation (26) and *c  by relation (7). 

Eq.(32a) then becomes: 

22

2

3

6 1

31

1

4 ( 1)

( 1) ( 1)

1

Tk k

T k T k

TT

T

−
−

+ +

−

+

=
 

After simplifications, the previous equation reduces to: 

6 3 1

1 3 1

1 /
1

1 /

T T T

T T T

−

−
= =

      (32b) 

Meaning that: 

6 1
T T=

                       (32c) 
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To confirm this result, write the energy equation (6) between sections 1-1 and 6-6, with 

the aid of relation (1). It comes that: 

1 6

1 1

k k
gRT gRT

k k
=

− −                        (6e) 

It is therefore clear that
6 1

T T= . 

The pressure parameter in section 6-6 can be expressed as the product of two ratios: 

6 64

1 1 4

P PP

P P P
=

        (33) 

According to Eq. (4a) and taking into account Eq. (32c), one may write: 

6 6 1

4 4 4

/( 1) /( 1)k k k k
P T T

P T T

− −

= =
   
   
   

                      (4d) 

However, 
1 4

/T T is expressed by relation (31a) and 
4 1

/P P is expressed by relation (30b). 

Eq. (33) then becomes: 

( )
2

2

3 3

3 1

1 1
6

3 1

1

3 1

1/( 1) /( 1)

/( 1)

/( 1)

4 1
1 /

( 1) 1
( )

4
/

( 1)

/

k k k

k k

k k

T Tk k
T T

k T k TP
T T

P k
T T

k



− −

−

−

+
−

− −
=

−
+

−

=

    
    

     

 
 
 

     (34)  

For a given gas, relation (34) indicates that the ratio 
6 1

/P P is only a function of
3 1

/T T , in 

the presence of a normal shock wave. For 3 1/ 2 / ( 1)T T k= + , corresponding to the critical 

temperature ratio, i.e. 3 *T T= , Eq. (34) gives 6 1 3 1/ ( / ) 1P P T T= = . 

On the other hand, the density parameter in section 6-6 is written, according to relation 

(1) as: 

6 6 1

1 1 6

P T

P T




=

        (1a) 

As 
6 1

T T= , the relation (1a) shows that: 

6 6

3 1

1 1

/( )
P

T T
P





= =

        (35) 
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In the field of the isentropic section located downstream of the shock zone, the pressure 

parameter in any arbitrarily chosen section is written by taking account of relation (4a) 

as: 

6 6 1

/( 1) /( 1)k k k k

P T T

P T T

− −

= =
   
   

  
, This is allowed since 

6 1
T T=  

On the other hand, one may write: 

6

1 6 1

PP P

P P P
=

 

Eliminating 
6

/P P  and 
6 1

/P P  between the previous equation, (4a) and (34) results in the 

following functional relationship: 

( )
3 1

1 1

/( 1)

/

k k

P T
T T

P T


−

=
 
 
 

          (36) 

Equation (36) shows that the pressure parameter, which depended on a single variable 

upstream of the shock (i.e. A/A*, V/c*, T/T1 or /1), becomes dependent on two variables 

downstream of the shock. The first variable concerns the state of the gas in the section 

considered and the other variable concerns the state of the gas in the initial section of the 

shock. 

For 6T T= and knowing that 6 1T T= as stated by Eq. (32c), Eq. (36) is reduced to: 

( )
3 1

6

1

/
P

T T
P

=
          (34) 

Eq. (34) is then reproduced. Equation (36) is only one of the explicit forms of the relation 

which exists between the three variables P/P1, T/T1 and T3/T1, the other two are: 

( )
1

1 3 1

( 1)/

/

/
k k

P PT

T T T

−

=
 
 
 

               (37) 

Thus: 

1

3 1

1

/( 1)

/
( /

( /
)

)
k k

P P
T T

T T


−
=

        (38) 
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The parameter of the density can be written as: 

6

1 6 1

 

  
=

        (39) 

However, it has been shown that: 

6 6

1 1

P

P




=

 

Thus, Eq.(39) becomes: 

6

1 6 1

P

P

 

 
=

      (39a) 

Taking into account Eqs. (4b) and (34), one may write the following functional 

relationship: 

3 1

1 1

1/( 1)

/( )

k

T
T T

T






−

=
 
 
 

        (40) 

Conversely, it comes that: 

1

1 3 1

1

/

/( )

k

T

T T T

 



−

=
 
 
 

        (41) 

( )
1

3 1

1

1/( 1)

/
( / )

/
k

T T
T T

 


−
=

         (42) 

For 3 1( / ) 1T T = , corresponding to 3 1/ 2 / ( 1)T T k= + , Eq. (42) gives 6 1/ 1  = since 

6 1/ 1T T = . 

The energy equation (6) applied between on the one hand any arbitrarily chosen section 

of the considered field (i.e. downstream of the shock) and section 6-6 on the other hand 

(Figure 5) gives: 

2

6

2 2

1 1

k k
V gRT gRT

k k
+ =

− −  
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Taking into account that 
6 1

T T= [Eq. (32c)], the previous equation becomes: 

2

1 1

2
1 /

1
( )

k
V gRT T T

k
−

−
=

        (10a) 

Eq.(10a) is then reproduced. 

Introducing Eq.(7) results in: 

( )

2

1

*

1
1 /

1

V k
T T

c k

+
= −

−

 
 
 

        (13a) 

Eq. (13a) is the reproduced. 

This shows that equation (13a) which determines the value of the velocity parameter, 

valid in the upper isentropic domain, retains its validity over the entire length of the flow 

passing through the nozzle. 

On the other hand, applying the continuity equation (5), one may obtain: 

2 2 2

2 2

2 * * *
c A

V
A




=

                         (5a) 

Taking into account Eqs. (13a) and (8c), Eq. (5a) gives: 

2 2

1

1*

2/( 1)
2

1 1

1 1 /

k

A k k

A k T T





−

− +
=

+ −

 
 

    
  
  

 

Eliminating 
1

/   between the previous equation and (40) results in: 

2

21

3 1

1*

2/( 1)

2/( 1)

2

1 1
( / )

1 1 /

k

k
TA k k

T T
A k T T T


−

−

−
− +

=
+ −

 
 

    
  
  

          (43) 

Eq. (43) can be written as the product of two functional relationships such that: 

2

2

3 1

1*

( / )
T

A T
T T

A T
 

−
=

   
   
   

      (43a) 
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Where ( )
1

/T T T is as: 

( ) 1

1

1

2/( 1)

2/( 1)

2

1 1
/

1 1 /
T

k

k
Tk k

T T
k T T T



−

−
− +

=
+ −

 
 

  
 
          (44) 

By squaring, equation (36) becomes: 

( )

2

2

3 1

1 1

2 /( 1)

/

k k

P T
T T

P T


−

=
   
   
   

                     (36a) 

The product of equations (36a) and (43a) gives, after deducing the square root: 

1 1 1 1*

/( 1)

T

k k

A P T T T

A P T T T
 

−

= =
     
     
     

                      (45) 

Proceeding in a similar manner by eliminating 
3 1

( / )T T  between equations (40) and 

(43a), results in: 

1 1 1 1*

1/( 1)

T

k

A T T T

A T T T


 



−

= =
     
     
     

                      (46) 

In summary, in any arbitrarily chosen section intersecting the isentropic domain of the 

flow downstream of the shock zone, the parametric relations are as follows: 

6 1
/ 1T T =  (32c);  

6 1 6 1 3 1
/ / /( )P P T T  = =  is defined by Eq. (35);  

1
/P P is defined by Eq. (36);  

1
/  is defined by Eq. (40);  

1
/T T is defined by Eq. (37) and (41);  

2

*( / )V c is defined by Eq. (13a);  

2 2

1 3 1*/ / /( ) ( ) ( )
T

A A T T T T 
−

=
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is defined by Eq. (43a);  

1 1*
( / )( / ) ( / )A A P P T T=

 

is defined by Eq. (45) , and  

1 1*
( / )( / ) ( / )A A T T  = is defined by Eq. (46). 

NUMERICAL EXAMPLE 1 

A subsonic flow of oxygen, passing through the nozzle shown in the figure below, is 

characterized by the following parameters: 

2A = 8 cm2;  2P = 9.37x104 Pa; 2T = 294.5 °K 

3A = 5 cm2; 3P = 8.05x104 Pa 

Determine the mass flow rate. 

 

SOLUTION 

The data are insufficient to apply relations (11). One can find a direct solution to this 

problem. Let us first recall relation (12a): 

( )( )
2/( 1)

2

2/( 1) ( 1)/ ( 1)

1 1

*

1 2

1 1

k

k k k

k

k kA

A T T

T T

−

− + −

−

+ +
=

−

 
 

    
   
   

      (12a) 

 

1

1

2

2

3

3
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Next, let's write that: 

2 2

2 2 *

3 3 *

/

/

A A A

A A A
=

   
   
   

        (17) 

Combining Eqs. (12a) and (17) and after some simplifications, results in: 

( ) ( )

( ) ( )

2

1

1

1
2/( 1)

1
3 1 3 I2

2/( 1)
3

1 12 2

/ /

/ /

k

k

k
k

k

k

T T T TA

A
T T T T

+

−

+
−

−

−

=

−

− 
 
 

                      (18) 

The flowing gas being oxygen, its compressibility coefficient is therefore k = 1.4. 

Inserting this value into Eq.(18) results in: 

( ) ( )

( ) ( )

62

6

5

3 1 3 I2

5

3 1 12 2

/ /

/ /

T T T TA

A T T T T

=
−

− 
 
 

                      (19) 

By multiplying the numerator and the denominator of the right-hand side of Eq.(19) by 

the quantity 
5

1T , one gets: 

2
1

1

1

1

5 6
2 3 3

5

3 2 2

A T T T

A T T T

−

−
=

−

  −
 
 

        (20) 

Eq.(20) gives 1T  as: 

( )

( )

2

1 2
5

3

6 6

2 3 2 3

5

2 3 2

/

/

A A T T

A A T T

T =
−

−

                (21) 

Eq. (21) has a character of general validity. According to Eq.(4a), one may write: 

( )3 2 3 2

( 1)/
/

k k
T T P P

−
=

        (22) 

Whence: 

( )4 4

3

(1.4 1)/1.4
294.5 8.05 10 / 9.37 10 282 KT

−
   ==
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With the given values of A2, A3, T2 and T3, the Eq.(21) gives: 

( )

( )

2

2 5

6 6

1 5

8 / 5 294.5
300.234 300

8 / 5 294.5

282

282
K KT   


=

 −

−
=

 

The molar mass of oxygen is M = 32g. According to the relation (2), the constant R is 

therefore R = 848/32 = 26.5 m/°K. 

According to relation (7), the hypothetical sonic velocity is: 

1*

2 1.4
9.81 26.5 300 301.6417 / 302 /

1.4 1

2

1
m s m s

k
gRT

k
c


   = 

++
==

 

On the other hand: 

2 1
294.5 / 300 0.9816666 0.982/T T = =

 

According to Eq.(12a), one may write: 

2/(1.4 1)

2

2

2/( 1) (1.4 1)/ (1.4 1)

2 2

1 1

*

1.4 1 2

1.4 1 1.4 1
k

A

A T T

T T

−

− + −

−

+ +
=

−

  
      

 
    
   
   

 

Whence: 

2/ (1.4 1)

2/ ( 1) (1.4 1) / (1.4 1) 5 6

2 2

1 1

2

2

*

1.4 1 2

0.06697961.4 1 1.4 1

294.5 294.5

300 300

k

T T

T T

A

A

−

− + −

−

+ +
=

−−

=

  
      

 
        

             

 

Hence: 

2

2

2

*

*

4.00756793 / 4.00756793 8 / 4.00756793A A
A

A
 = ==

 
 
 

 

The final result is: 

2 2

* 3.99622139cm 4cmA =
 

 



Contribution to the study of the isentropic flow in the Laval nozzle 

69 

According to Eq.(4c), one may write: 

1/( 1)

2 2

1 1

k

T

T





−

=
 
 
 

        (4c) 

Thus: 

( )
1/ (1.4 1)

1 2

2

1

294.5
0.95479494 0.955 / 0.955

300
 





−

=  ==
 

According to Eq.(8c), one may deduce: 

1/( 1)

* 1

2

1

k

k
 

−

+
=
 
 
          (8c) 

Whence: 

1/( 1)

2

*
0.955

2

1

k

k




−

+
=
 
 
    

Taking into account Eq.(1), the previous equation is written as 

1/( 1)

2

2

*
0.955

2

1

k
P

k gRT


−

+
=
 
 
   

That is: 

( )
41/(1.4 1)

*

2 9.37 10

1.4 1 0.955 9.81 26.5 294.5


−


+   
=

 

Or: 

4

3

*

0.63393815 9.37 10
0.812424 kg/m

0.955 9.81 26.5 294.5


 

  
==

 

The mass flow rate is such that: 

4

* * * 302 0, 812424 4 10 0.0981408 kg/sm Ac 
•

−
   == =

 

Approximately: 

0.0981kg/sm
•

=
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The mass flow rate thus calculated corresponds in fact to the maximum mass flow rate 

because the example assumes or considers that the flow velocity reaches the sonic 

velocity in the throat. Thus, the calculated mass flow rate can be found by applying 

relation (11g). 

NUMERICAL EXAMPLE 2 

Let us consider the Laval nozzle represented by the figure below, in which the air flow is 

in the presence of a normal shock wave in the expanded section. The flow regime is 

subsonic in the convergent, sonic in the narrowed section 2-2. 

In the section I-I located in the convergent part, the data is as follows: 

2 2

I
2 10A m

−
= 

; I
287.5T K=

: 
3

I
0.90 /kg m =

 

On the other hand, the cross-sectional area 2-2 is as: 

2 2

2 * 10A A m
−

= =
 

In section III-III located in the divergent and downstream of the choc zone, the data are 

as follows: 

2 2

III
2 10A m

−
=

; III
77600P Pa=

 

Determine the value of the following parameters: 

I
P

; IV
 

1
T

; 1P
; 1  

*c
; *T

; *P
 ; *  

3A
;  3V

; 3T
; 3P

; 3  

4V
; 4T

; 4P
; 4  

III
V

; III
T

; III
P

 

6P
; 6  
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SOLUTION 

According to relation (1), one can write: 

I I IP gRT=
 

The molar mass of air is such that M = 28.965338g and the constant R is given by equation 

(2) as: 

848 848
29.276 29.3

28.965338
/

M
R m K= = = 

 

Thus: 

I II 0.90 9.81 29.3 287.5 74337.2888 74373.3PaP gRT Pa    = ==
 

Since the cross-sectional areas IA  and *A  are given, then: 

2

2

2

2

I *

2 10
/ 2

10
( )A A

−

−


= =
 
 
 

 

For k = 1.4, Eq. (12a) becomes: 

*

2

5 6

1 1

0.0669796A

A T T

T T

=

−

 
 

    
   
   

 

It is necessary to determine the value of the ratio I 1/T T of this relation ( IA A=  and 

IT T= ) for the known value ( )I

2

*/ 2A A = .  The section I-I being located in the 

convergent where the flow is subsonic, the temperature ratio I 1/T T  should be greater 

1

1

I

I

2

2

*

*

II

II

3

3

4

4

5

5

6

6

III

III
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than the critical temperature ratio, i.e. I 1/T T > * 1/T T = 5/6  0.8333. This is the right 

branch of the curve in Figure 3 where the flow regime is subsonic. The calculation shows 

that:  

I 1 0.958634/T T =  1 I 0.958634/T T= = 1 287.5 / 0.958634T =
 

1 299.905908 300T K K  =
 

For k = 1.4, relation (12b) becomes: 

10/ 7 12/ 7

*

1 1

2

0.0669796A

A P P

P P
−

=
 
 

    
   
   

 

It is necessary to calculate the critical pressure ratio I 1/P P  from this last relation for the 

known value ( )I *

2
/ 2A A = . The flow being in subsonic mode, it is about the right branch 

of figure 3. The I 1/P P  pressure ratio must be such that: 

I 1/P P  > 
1* 0.52828179/P P  . The calculation shows that: 

I 1 0.86255/P P =  1 74373.3 / 0.86255 86224.9145P Pa==  

1 86225P Pa  

For k = 1.4, Eq. (12c) becomes: 

*

1 1

2

2 2.4

0.0669796A

A  

 
−

=
 
 

    
   
   

 

What is needed is to calculate the critical density ratio I 1/   from this last relation for 

the known value of ( )I

2

*/ 2A A = . The flow being in subsonic regime, it is about the 

right branch of figure 4. The I 1/   density ratio must be such that: 

I 1/ 
 > * 1 0.63393815/  =
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The calculation shows that: 

I 1 0.89977/  =  3

1 0.90 / 0.89977 1.00025562 /kg m ==
 

3

1 1 /kg m 
 

According to Eq. (13a), one may write for IT T= : 

2

I

I 1

*

1.4 1
(1 0.958634) 0.248196

1.4 1

1
(1 /

1
)

V k
T T

kc

+
− =

−

+
= −

−
=

 
 
 

 

Whence: 

 

According to Eq. (7) and knowing that R =29.3 and 1 300T K= , the wave celerity is such 

that: 

* 1

2 1.4
9.81 29.3 300 317.177474

1.4 1

2
/

1

k
gRT m s

k
c


   =

++
= =

 

* 317.2 /m sc 
 

Thus: 

*I 0.49819273 0.49819273 317.177474 158.015512 /V c m s == =
 

I 158 /V m s
 

Regarding the parameters in the sonic cross-sectional area namely, *T , *P and * , they 

can be calculated by applying relations (8) for k = 1.4. It follows: 

11*

2 5 5
300 250

1 6 6
T T

k
T K =

+
= = =

         

/ ( 1)

1*

2
0.52828179 86224.9145 45551.0522

1

k k

P
k

P Pa

−

=  =
+

=
 
 
   

* 45551P Pa
  

( ) 3

1/( 1)

* 1

2
0.63393815 1.00025562 0.6341002

1
/

k

k
kg m 

−

 =
+

= =
 

 
I

*

0.248196 0.49819273
V

c
==
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3

* 0.634 /kg m 
 

Knowing the area of section III-III and the pressure in this section, one can calculate the 

following parameters: 

2 2

III *
2 10 / 10 2/A A

− −
= =

 

III 1
77600 / 86224.9145 0.899979/P P ==

 

III 1
0.90/P P 

 

One can also calculate the following product: 

III III

1*

2 0.90 1.80
A P

A P
 ==

 

This product is governed by Eq. (44) for 
III

A A= , 
III

P P= and 
III

T T= . Thus: 

III II III III III

1 1 1 1*

/( 1)

1.80
I

k k

A P T T T

A P T T T
 

−

= = =
     
     
     

 

( )
( )

III 1

1

III 1 III

2/( 1)

2/( 1)
2

1 1
/

1 1 /

k

k

Tk k
T T

k T T T


−

−

− +
=

+ −

 
 
 

 

For k = 1.4, one may write: 

( )
III 1

III II III 1

1/ 2

1 1 III*

3.5 5/2

0.25880416
1.80

1 /

I
A P T T

A P T TT T−
= =
   
   
   

 

The solution of this equation is: 

III 1
0.98014024/T T =

 

Thus: 

III 1
0.98014024 0.98014024 300 294.042072T T K == = 

 

III
294.04T K 

 

Thus, applying Eq. (1), one may obtain: 
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3III

III

III

77600
0.91815489

9.81 29.3 294.04
/

P
kg m

gRT
 =

 
= =

 

3

III
0.918 /kg m 

 

On the other hand, one may write for k = 1.4: 

( ) ( )1

III 1

III 1 III

5 5
0.0669796 0.0669796 1

1 0.98014024 0.98014024

/
1 /

T
T T

T T T


−−
= =

 
 
 

 

Whence: 

( )
III 1

3.72844229/T T =
 

Eq. (43a) gives for the cross-sectional area III-III: 

( )

( )
III

3 1

III 1

*

2 2

2 2
1.07283409

3.72844229

/
( / )

/
T

A A
T T

T T


−
= = =   

Thus: 

3 1
1 / 1.07283409 0.96545874( / )T T ==

 

For k = 1.4, Eq. (34) gives 
3 1

( / )T T as: 

( )

 

3 3

3 1

1 1

3 1

3 1

2.5 3.5

3.5

3.5

5.8333333 6

0.96545874

0.97222222

1 /

( / )
/

T T
T T

T T
T T

T T


− −

= =
−

    
    

    
 

The solution of the previous equation is: 

3 1
0.72721/T T =

 

One can therefore notice that 
3 1

/ 0.72721T T =  is lower than the critical temperature ratio 

* 1
/T T = 5/6  0.8333, which indicates that section 3-3 is located in the supersonic zone 

of the flow. 

Thus: 

3 1
0.7272 0.72721 300 218.163 2181T T K = = = 
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According to Eq. (13a), one may write for
3

T T= : 

3 1

2

3

*

1 1.4 1
(1 / ) (1 0.72721) 1.63674

1 1.4 1

k
T T

k

V

c

+ +
− = − =

− −
=

 
 
 

 

Whence: 

3 *
1.63674 1.63674 317.177474 405.791445 /V c m s == =

 

3
405.8 /V m s

 

According to Eq. (4a), one may obtain for k = 1.4 what follows: 

( )3

1

1.4
3.5

1.4 1
3

1

218.163
0.32795137 0.328

300

T

T

P

P

−

= = =
 
 
 

 

Whence: 

3 1
0.32795137 0.32795137 86225 28277.6068P P Pa == =

 

3
28277.6P Pa

 
1.4 1/1.4

3 3 3

3 1

1 1 1

P P

P P


 


=  =
   
   
   

 

Thus: 

1/1.4 1/1.4

3

3 1

1

328277.06068
1 0.45096581

86225
/

P

P
kg m = =  =

   
  
  

 

3

3
0.451 /kg m 

 

According to Eq. (26) for k = 1.4, one obtains: 

( ) ( ) ( )
4

3 1 3 1

2

*

1.4 1 1 1

(1.4 1) 1 / 6 1 / 6 1 0.72721

V

c T T T T

−
= =

+ − −  −
=

 
 
 

 

After calculations, the following result is obtained: 

4 *0.78164608 0.78164608 317.177474 247.920528 /V c m s == =
 

4
248 /V m s
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Considering Eq. (30b) for k = 1.4 results in: 

3 3

1 1

4

1

2.5 3.5

5.83333333 6
T TP

P T T
= −

   
   
   

  

4

1

2.5 3.5
5.83333333 0.72721 6 0.72721 0.66296195

P

P
 = − =

 

4

1

0.663
P

P


 

4
0.66296195 86224.9145 57163.8378 57164P PaPa == 

 

Applying Eq. (31a) for k = 1.4 yields: 

3

4 1

31

1

0.97222222
0.97222222 0.72721

0.89817157
1 0.72721

1

T

T T

TT

T

−
−

= = =
−

−
 

4

1

0.8982
T

T


 

Thus: 

4 1
0.89817157 0.89817157 300 269.451471T T K= =  = 

 

4
269.5T K 

 

According to Eq. (1), one may write: 

34

4

4

57163.8378
0.73808128 /

9.81 29.3 269.451471

P
kg m

gRT
 = = =

   

3

4
0.738 /kg m 

 

Considering Eq. (35) for 
3 1

( / ) 0.96545874T T = results in: 

6 1 3 1
( / 86224.9145 0.96545874 83246.5973)P P T T Pa  == =

 

6
83246.6P Pa
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Eq. (1) gives when taking into account that 
6 1

T T= : 

3 36

6

6

83246.5973
0.96424323 / 0.964 /

9.81 29.3 300

P
kg m kg m

gRT
 = 

 
= =

 

Regarding the loss of mechanical energy caused by the normal shock wave, it is obvious 

that this transformation is irreversible and is accompanied by an increase in entropy.  

Knowledge of the ratio 
6 1 6 1 3 1

/ / ( / )P P T T  = = makes it possible to calculate the loss 

of mechanical energy E due to the normal shock wave per unit of mass, transformed 

into heat.  Indeed, the flow between sections 1-1 and 3-3 on the one hand and between 

sections 4-4 and 6-6 on the other hand is isentropic without friction and therefore without 

loss of mechanical energy. It follows that all of the mechanical energy expended on the 

isothermal expansion between sections 1-1 and 6-6 is dissipated by the shock. 

Applying relation (6c) between sections 1-1 and 6-6 and knowing that
6 1

T T= , one may 

obtain after some rearrangements: 

1 6 1 3 1

1

1
ln( / ) ln ( / )E gRT P P gRT T T

−
 = =

                                     (6e) 

Therefore, one can form the energy loss parameter 
1

/E T such as: 

1

1 6 3 1

1

ln( / ) ln ( / )
E

gR P P gR T T
T


−

= =
                       (6f) 

In this last equation, the energy loss parameter 
1

/E T  has the dimension 
2 2 1

m s K
− −
 , 

which implies that E has the dimension  
2 2

m s
−

, i.e. J./kg (Joule per kilogram). 

Taking into account the results obtained previously, it comes that: 

2 2 1

1

9.81 29.3 ln(86224.9145 / 83246.5973) 10.1038197 . .
E

T
m s K

− −
=   = 

 

Thus: 

2 2

1
10.1038197 10.1038197 300 3031.1459 /E T m s = =  =

 
2 2

3031.15 / 3031.15 /E m s J kg  =
 

 

 

 



Contribution to the study of the isentropic flow in the Laval nozzle 

79 

The yield   of the nozzle is given by the following relation (Ouziaux and Perrier, 2004): 

4 3

4 3

( 1)/
( / ) 1

( / ) 1

k k
P P

T T


−
−

=
−         (47) 

Whence: 

4 3

4 3

( 1)/ (1.4 1)/1.4
( / ) 1 (57163.8378 / 28277.6068) 1

( / ) 1 (269.451471 / 218.163) 1

k k
P P

T T


− −
− −

= =
− −  

The final result is: 

0.94748896 0.947 94.75% =  =
 

Note that: 

Multiplying Eq. (30b) by 
1 3

/P P  results in: 

3 34 1 1

2

3 1 3 1 3

1/( 1) /( 1)

4 1

1 1

k k k
T TP P Pk k

P k T P k T P

− −

+
= −

− −

      
      

      
      (30d) 

On the other hand, Eq. (4c) gives: 

( )
3 1 3 1

( 1)/
( / ) /

k k
T T P P

−
=

                       (4e) 

Combining Eqs. (30d) and (4e) results in: 

4 1

2

3 3

( 1)/

4 1

1 1

k k

P Pk k

P k P k

−

+
= −

− −

 
 
 

                        (48) 

Or, taking into account Eq. (4e), one may write: 

4 1

2

3 3

4 1

1 1

P Tk k

P k T k

+
= −

− −

 
 
 

                      (49) 

On the other hand, multiplying Eq. (31a) by
1 3

/T T , yields: 

( )
1

2

34

33

1

4
1

1

1

Tk

TkT

TT

T

−
+

=

−
        (50) 
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Eliminating  
4 3

/P P  and 
4 3

/T T  between Eqs. (47), (49) and (50), gives: 

1

2

3

1 3

1

2

3

3 1

( 1)/

4 1
1

1 1
( / )

4
1

( 1)
1

1 /

k k

Tk k

k T k
T T

Tk

k T

T T

 

−

+
− −

− −
= =

−
+

−
−

 
 
 

        (51) 

Eq.(51) can be rewritten as: 

1

2

3

1 3

1 31

2

3 1 3

( 1)/

4 1
1

1 1
( / )

/4
1 1

( 1) / 1

k k

Tk k

k T k
T T

T TTk

k T T T

 

−

+
− −

− −
= =

− −
+ −

 
 
 

 
 
 

                      (52) 

For k = 1.4, 
1

300T K=  and
3

218.163T K=  , temperature values previously calculated, 

Eq. (52) gives the same result than that obtained from Eq. (47).  

The in-depth study of the relation (52) showed that the yield is 100%, i.e. 1 = , if 

3 1
/ 2 / ( 1)T T k= + . This corresponds to the critical temperature ratio expressed by the 

relation (8a) for
3*

T T= , also corresponding to the following equalities
3*

P P=  and 

3*
 = . The ratio of these parameters is expressed by Eqs. (8b) and (8c) respectively. In 

addition, the yield  increases as 
3 1

/T T increases for a gas of a constant k = 1.4. 

 
Figure 9: Variation of 

3 1
( / )T T =  according to Eq. (52) for k=1.4.  

(•) 
3 1

5 / 6 0.8333/T T =   corresponding to 1 =  

0
0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1


3 1/T T
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Note 

The shock zone can retreat upstream to reach the narrowed section 2-2. This is a 

borderline case where the cross-sectional areas 2-2, 3-3 and 4-4 coincide or merge. The 

thickness of the shock zone is reduced to zero. Also, the case where the shock zone moves 

downstream to reach the final cross-sectional area 5-5 is also a borderline case. In this 

case, the cross-sectional areas 3-3 and 4-4 coincide or merge with 5-5. 

NUMERICAL EXAMPLE 3 

A flow of nitrogen, passing through the nozzle shown in the figure below, is defined by 

the following parameters: 

Absolute pressure 
5

1 10 PaP =  

Absolute temperature 1 293T K=  

Mass flow rate 1.887 /m kg s
•

=  

Cross-sectional area in section 2-2 
2 2

2
10 mA

−
=  

Cross-sectional area in section a a−
22

2 10aA m
−

=  

The velocity in the cross-sectional area b b− 79.5 /bV m s=  

 

Determine: 

1. The velocity aV , the absolute temperature aT , the density a  in the cross-

sectional area a a− . 

2. The cross-sectional area bA .  

1

1

a

a

2

2

b

b
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SOLUTION 

The molar mass of nitrogen is M = 28 g. 

Thus, according to Eq. (2), the constant R is: 

848 848
30.2857143 / 30.3 /

M 28
R m K m K=   = =

 

According to Eq. (7), one may write: 

1*

2 2 1.4
9.81 30.3 293 318.759416

1 1.4 1
/

k
gRT

k
m sc


=    =

+ +
=

 

* 318.76 /m sc 
 

Applying Eq. (1) results in: 

3

5

1

I

I

10
1.3297439 /

9.81 30.3 253

P
kg m

gRT
 =

 
= =

 

3

I 1.33 /kg m 
 

According to Relation (8c), the critical value of the density ratio is: 

*

1

1/( 1) 1/(1.4 1)
2 2

0.63393815
1 1.4 1

k

k





− −

= = =
+ +

   
   
     

Thus: 

3

* 10.63393815 0.63393815 1.3297439 0.84297539 /kg m  =  ==
 

3

* 0.843 /kg m 
 

Taking into account the continuity equation expressed by Eq. (5) results in: 

2 4 2

*

* *

1.887
0.00702232 70.22 10

0.843 318.76

m
A m

c
m





−
= = =  

  

We can thus observe that: 

4 2

* 70.22 10A m
−

=
< 

2 2

2
10A m

−=
 

We can thus conclude that the flow remains subsonic over the entire length of its path. 
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The section *A , computed previously, is in fact a hypothetical sonic section. It 

theoretically occurs at a certain distance downstream from section 2-2 by extending the 

convergent (Figure 8). 

Let us form the following parameter: 

2
22

*

2 10
4.05572949

0.00702232

a
A

A

−


= =
  
  

   
 

For k = 1.4, Eq. (12a) becomes: 

*

1 1

2

5 6

0.0669796
a

a a

A

A T T

T T

=

−

 
 
     

   
   

 

It is necessary to determine the value of the ratio a 1/T T of this relation ( aA A=  and 

aT T= ) for the known value of ( )
2

a * 4.05572949/A A = .  The section a a− being 

located in the convergent where the flow is subsonic, the temperature ratio a 1/T T  should 

be greater than the critical temperature ratio, i.e. 
a 1

/T T >
* 1

/T T = 5/6  0.8333. This is the 

right branch of the curve in Figure 3 where the flow regime is subsonic. The calculation 

shows that:  

a 1/ 0.98190679T T =  1
0.98190679 0.98190679 293aT T= = 

 
287.698689 287.7aT K K=     

According to Eq. (13a), one may write for aT T= : 

3

a 1

*

2

1 1.4 1
(1 / ) (1 0.98190679) 0.10855926

1 1.4 1

V k
T T

c k

+ +
= − = − =

− −

 
 
 

 

Whence: 

a *0.10855926 0.10855926 318, 759416 105.025912 /V m sc= =  =
 

a 105 /V m s
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For k = 1.4, relation (12b) becomes: 

10/7 12/7

*

1 1

2

0.0669796
a

a a

A

A P P

P P
−

 
= 
    
   
   

 

It is necessary to calculate the critical pressure ratio a 1/P P  from this last relation for the 

known value of ( )
2

a */ 4.05572949A A = . The flow being in subsonic mode, it is about 

the right branch of figure 3. The a 1/P P  pressure ratio must be such that: 

a 1/P P  > * 1/ 0.52828179P P  . The calculation shows that: 

a 1/ 0.93809204P P =  5

10.93809204 0.93809204 10aP P Pa=  =   

93810aP Pa  

On the other hand, for k = 1.4, Eq. (12c) becomes: 

2

2 2.4

*

1 1

0.0669796
a

a a

A

A  

 

=

−

 
 

    
   
   

 

What is needed is to calculate the critical density ratio a 1/   from this last relation for 

the known value of ( )
2

*/ 4.05572949
a

A A = . The flow being in subsonic regime, it is 

about the right branch of figure 5. The a 1/   density ratio must be such that: 

1/a 
 > * 1/ 0.63393815  =

 

The calculation shows that: 

a 1/ 0.95537819  = 
3

10.95537819 0.95537819 1.3297439 1.27040832 /a kg m = =  =
 

3
1.27 /a kg m 
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Let us compute the following ratio: 

2
2

*

79.5
0.06212457

318.959416

bV

c
= =

   
  
  

 

According to Eq. (13a), one may write for bT T= : 

2

1

*

1
(1 / ) 0.06212457

1

b
b

V k
T T

kc

+
= − =

−

 
 
 

 

After some rearrangements, the previous relation gives: 

2

*

1

1 1.4 1
/ 1 1 0.06212457 0.9896459

1 1.4 1

b

b

Vk
T T

k c

− −
= − = −  =

+ +

 
 
 

 

Applying Eq. (12a) for k = 1.4, one may write: 

2

5 6 5 6

*

1 1

0.0669796 0.0669796
6.81444656

0.9896459 0.9896459

b

b b

A

A T T

T T

= = =
−

−

 
 
     

   
   

 

Whence: 

*6.81444656 6.81444656 0.00702232bA A = =
 

2 2 2
0.0183341 1.83 10bA m m

−
=  

 

NUMERICAL EXAMPLE 4 

The air flow flowing through the nozzle shown in the figure below is characterized by the 

following parameters in presence of a zone shock between the sections 3-3 and 4-4, in the 

expanded section. The flow regime is subsonic in the convergent, sonic in the narrowed 

section 2-2. 

2

2 * 20A A cm= = ; 
4

1 2 10P Pa=  ; 1 348.2T K=  ; 
4

6 1.22 10P Pa=   

Determine: 

3A (Cross-sectional area 3-3) ; 3V (Velocity in the section 3-3) ; 4V (Velocity if the section 
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4-4) ; m
•

(Mass flow rate) ; E (The energy loss) 

 

SOLUTION 

The molar mass of air is such that M = 28.965338g and the constant R is given by equation 

(2) as: 

848 848
29.276 29.3 /

M 28.965338
R m K= = =  

 

According to Eq. (7), the actual sonic velocity passing through the nozzle is, for k = 1.4: 

*

2 1.4
9.81 29.3 348.2 341.708744 / 341.71 /

1.4 1
m s m sc


=    = 

+   

Let us calculate the following pressure ratio: 

4 4

6 1/ 1.22 10 / 2 10 0.61P P =   =
          

Thus, Eq. (34) can be written for k = 1.4 as: 

( )

( )

3 3

3 1

1 16

1 3 1

2.5 3.5

3.5

3.5

5.8333333 6 1 /

0.61
0.97222222 /

T T
T T

T TP

P T T

− −

= =
−

    
    

     
 

The calculations show that the solution to this equation is: 

3 1/ 0.49911 0.5T T = 
      

1

1

2

2

*

*

3

3

4

4

5

5

6

6

a

a b

b
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Let us recall relation (12a) when applying it for 3A A= , 3T T= and k = 1.4. Thus: 

3

5 6

3 3

1 1

2

*

0.0669796A

A T T

T T

=

−

 
 
     

   
   

 

Whence: 

( ) ( )
3

5 6

2

*

0.0669796
4.2866941

0.5 0.5

A

A
= =

−

 
 
 

      

2

3 *4.2866941 4.2866941 20 41.4086662A A cm= =  =
 

2

3 41.41A cm
 

Applying Eq. (13a) to the section 3-3 for k = 1.4 results in:  

3 1

2

3

*

6(1 / ) 6 (1 0.5) 3
V

T T
c

= − =  − =
 
 
 

   

Thus: 

3 *3 3 341.708744 591.856906 / 592 /V m s m sc =  = =
 

In the same way, let's apply Eq. (26) to the section 4-4 for k = 1.4. So: 

( ) ( )
3 1

2

4

*

1 1
1 / 3

6 1 / 6 1 0.5

V

T Tc
= = =

−  −

 
 
 

   

The velocity 4V is then: 

4 * / 3 341.708744 / 3 197.285635 / 197.3 /V m s m sc = = =
 

To compute the mass flow rate, let us apply Eq. (11a) for: 

2*A A A= =
: *T T=

; k =1.4 

Thus: 

( )
1 1

2.5

1 *

1

*
2 7 1 /

T
m A gRT T T

T


•

= −
 
 
 
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Combining the previous relation with Eqs. ( 1) and (8a), one may obtain the following 

result: 

1

1

20.68473145A P
m

gRT

•

=
 

Thus: 

4 4
0.68473145 20 10 2 10

0.08657601 /
9.81 29.3 348.2

m kg s
• −

   
= =

 
 

0.0866 /m kg s
•


 

The mass flow rate thus calculated corresponds in fact to the maximum mass flow rate 

because the example assumes or considers that the flow velocity reaches the sonic 

velocity in the throat. Thus, the calculated mass flow rate can be found by applying 

relation (11g). 

Concerning the energy loss, applying relation (6c) between sections 1-1 and 6-6 and 

knowing that
6 1T T= , one may obtain after some rearrangements: 

1 61ln( / )E gRT P P =
 

Whence: 

2 2
9.81 29.3 348.2 ln(1 / 0.61) 49471.2374 /E m s =    =

 
2 2

49471.24 /E m s 
or 

49471.24 /E J kg 
 

BORDERLINE CASES 

1. The shock zone retreats upstream and reaches section 2-2 corresponding to the throttle 

of the nozzle (Figure 10). As a result, sections 2, 3 and 4 coincide. In this case, one can 

write: 

4 3 2 3 1 6 1 6 12/ / ( 1) / / 1T T T T T k P P  = =  = +  = =
 

According to Eq. (12a), we have in the terminal section: 

2 '
5 5

* 1
T

A T

A T


  
=     

   
 

where '
5 1/T T is the temperature ratio corresponding to this borderline case. Having the 
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value of the section ratio previously defined, the value of the temperature ratio is then 

worked out. This corresponds to the subsonic branch of the curve in Figure 3. Knowing 

the value of the temperature ratio '
5 1/T T , one can deduce the value of ' 2

5 *( / )V c , '
5 1/P P , 

and '
5 1/  , corresponding to the current borderline case, by applying the corresponding 

equation determined above. 

 

Figure 10: Limit case where the shock zone reaches the narrowed section 2-2 of the 

nozzle. 

2. In a second borderline case, the shock zone moves downstream and reaches terminal 

section 5 (Figure 11). 

 

Figure 11: Limit case where the shock zone reaches the terminal section 5-5 of the 

nozzle. 

Consequently, the shock zone, delimited by sections 3 and 4, very close to each other, 

coincides with the terminal section 5: 

- Immediately upstream of the shock, we have the following parameters: 

"
5 3 3

1 1

T T

T T

− =
; 

"
5 3 3

1 1

P P

P P

− =
; 

"
5 3 3

1 1

 

 

− =
, and 

2 2"
5 3 3

* *

V V

c c

−
   

=    
  

 

 

1

1

2

2

*

*

3

3

4

4

5

5

6

6

1

1

2

2

*

*

3

3

4

4

5

5

6

6
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- Immediately after the shock, we have the following parameters: 

"
5 4 4

1 1

T T

T T

− =
; 

"
5 4 4

1 1

P P

P P

− =
; 

"
5 4 4

1 1

 

 

− =
, and 

2 2"
5 4 4

* *

V V

c c

−
   

=    
  

 

Applying Eq. (12a), one may write: 

2 "
5 5 3

* 1
T

A T

A T
 −

  
=     

   
 

This corresponds to the subsonic branch of the curve in Figure 3. Knowing the cross-

sectional area ratio 5 */A A , the temperature ratio "
5 3 1/T T− , corresponding to this 

borderline case, is worked out from Eq. (12a). The value of the last temperature ratio 

allows calculating the following parameters by applying the corresponding equation 

determined previously, such as Eqs. (30): 

"
5 4

1

T

T

−

; 

"
5 3

*

V

c

−
 
  
 

; 

"
5 4

*

V

c

−
 
  
 

; 

"
5 3

1

P

P

−

; 

"
5 4

1

P

P

−

; 

"
5 3

1





−

, and 

"
5 4

1





−

 

CLASSIFICATION OF FLOWS 

It is the study of borderline cases that makes it possible to classify the flows studied in 

this paper into four groups: 

1. In the case where: 

' ' '
5 1 5 1 5 1 5 1 5 1 5 1/ / / / / /T T T T P P P P        

 

The flow remains subsonic and entropic over the entire length of the nozzle and it is the 

introduction of the hypothetical values of the parameters *c and *A which makes it 

possible to analyze the problem, taking into account upstream and downstream conditions 

of the flow in the nozzle. 

2. In the case where: 

' ' '
5 1 5 1 5 1 5 1 5 1 5 1/ / / / / /T T T T P P P P    =  =  =

 

We are in the presence of the first borderline case. The flow becomes sonic only over the 

infinitesimal distance corresponding to the passage through the throat. There is no shock 

wave and the flow is isentropic over the entire length of the nozzle. 
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3. In the case where: 

' " ' "
5 5 5 4 5 5 5 4

1 1 1 1 1 1

T T T P P P

T T T P P P

− −    
, and 

' "
5 5 5 4

1 1 1T

  

 

− 
  

The flow, subsonic upstream of the narrowed section, becomes sonic in the latter to 

immediately transform into supersonic immediately downstream of this same section. 

This supersonic flow accelerates until it reaches section 3, to change there again in 

subsonic, producing a normal shock wave and decelerating until the exit of the nozzle. It 

is this general case which has been the subject of detailed considerations in this paper. 

The characteristics of such a flow upstream of the shock zone only depend on the 

upstream conditions, while the position of the shock zone and the characteristics of the 

section downstream thereof are influenced by the conditions existing downstream of the 

nozzle. 

4. In the case where: 

" " "
5 4 5 5 4 5 5 4 5

1 1 1 1 1 1

T T P P

T T P P

 

 

− − −    
 

The flow, subsonic upstream of the narrowed section, becomes sonic there to transform 

into supersonic immediately downstream of this section. The flow will retain this nature 

of its regime until the outlet of the nozzle. Such a flow remains isentropic over the entire 

length of its path in the nozzle and depends only on the conditions existing upstream. 

Note 

To determine all the characteristics of the isentropic flow upstream of the shock, or if 

there is none along the entire length of the nozzle, it is sufficient to know the groups G1 

made up of the following elements: 

, ,A T P
; 

, ,A T 
; 

, ,A P 
; 

, ,A V 
; 

, ,A V P
  (G1) 

of which A and V in the section *-*, the others T, P or  either in the section *-*, either 

in the upstream compartment of the nozzle, or in a section which is arbitrarily chosen 

provided one of the following five parameters must then be known: 

2

*

A

A

 
 
 

;

2

*

V

c

 
 
 

;
1

T

T ;
1

P

P , and 
1



     (G2) 

When the flow is complicated by the presence of a shock wave, the complete 

determination of all its characteristics requires knowledge, in a section downstream of the 

shock, of one of the following pairs of parameters: 
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* 1

,
A P

A P ; 
* 1

,
A

A



 ; 
* 1

,
A T

A T ; 
* *

,
A V

A c ; 
1 1

,
T P

T P ; 
1 1

,
T

T



 ; 
1 1

,
P

P



 ; 
* 1

,
V

c



 ; 
* 1

,
V P

c P ; 
* 1

,
V

c



  

and one of the G1 group in the same section including A and V in the *-* section, the other 

T, P and  either in the *-* section, or in the upstream compartment of the nozzle, or in a 

arbitrarily chosen section. In this case, one must know one of the five parameters of G2 

group. 

CONCLUSIONS 

The Laval nozzle has been the subject of a theoretical development in order to define the 

functional relationships which link the flow parameters between them. The parameters of 

the flow in any cross-sectional of the nozzle have all been related to the parameters of the 

flow at the generator state, with the exception of the cross-sectional area A which has 

been related to the narrowed section A* of the nozzle. The parameters thereof are 

characterized by the index "1". On the other hand, the flow parameters in the narrowed 

section of the nozzle corresponding to the Mach number M* are endowed with the index 

"*".  

The energy equation allowed determining the relationships governing the velocity ratio 

V/V*, where V is the average velocity of the isentropic flow, subsonic or supersonic, in 

any cross-sectional area of the nozzle [Eqs. (10a), (10b) and 10c)].  

The velocity equations, the continuity equation as well as the relations governing the 

isentropic flow made it possible to define the relationships of the mass flow rate. This is 

given as a function of the flow parameters related to those of the flow in the generator 

state such as T/T1, P/P1 and /1 [Eqs.(11a), (11b) and (11c)]. 

The energy equation, the continuity equation as well as the isentropic relations made it 

possible to determine the relationships governing the cross-sectional area ratio A/A*, 

where A is any cross-sectional area [Eqs. (12a), (12b) and 12c)]. The quadratic form of 

the obtained equations made it possible to conclude that there are two cross-sectional 

areas A characterized by two different values of the flow parameters such as the 

temperature ratios T/T1, the pressure ratio P/P1 and density ratio /1. The functional 

relationships /A* = f (T/T1), A/A* = f (P/P1) and A/A* = f (/1) have been illustrated in 

figures 3, 4 and 5. 

The Theoretical development could lead to the establishment of the relation between the 

Mach number M* in the narrowed section A* of the nozzle as a function of the Mach 

number M in any section A. The graphical representation of the relation [Fig (7)] showed 

that the flow is sonic in the throat if and only if the Mach number M is equal to unity. For 

values of M such as 0 < M < 1, corresponding to a subsonic flow, the throat is also the 

geometrical locus of a subsonic flow. However, for this range of values of the Mach 

number M, the sonic character of the flow may occur in a hypothetical cross-sectional 
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area A* located downstream of the throat at some distance from it.  

The normal shock zone has been the subject of theoretical development in order to define 

the relations which bind the parameters of the flow. Based on two very close sections 3-

3 and 4-4 (Figure 6), the theoretical development led to defining the following functional 

relationships: 

2

4 3 1 3 1 3 1*
( / ) ( / ) ( / ) ( / )A A T T P P    = = =

.  

Also, the following ratios have been determined: 

2

4 4 1 4 1*
( / ) , / , /V c T T  

, and 4 1/P P
. 

Finally, the borderline cases were examined and made it possible to define the criteria for 

classifying flows in the nozzle. 
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