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ABSTRACT 

The functional (yc;m;S0;;) = 0 relationship has been well defined and theoretically 

established for the triangular-shaped channel, where yc is the critical depth, m is the side 

slope, S0 is the channel bottom slope,  is the absolute roughness, and  is the kinematic 

viscosity of the flowing water. A thorough investigation of the function revealed that the 

critical depth yc is governed by a cubic equation without second order term. Its analytical 

resolution is very easy when one uses the circular or hyperbolic trigonometry.  

The article ends with the study of the special case of the smooth triangular-shaped channel 

of a 90° apex angle by examining the equation that governs the critical depth It turned out 

that yc is given by an explicit equation, as a function of m, S0, and  . In addition, it has 

been demonstrated that, for such a canal, the more the slope S0 increases, the more the 

critical depth decreases. Moreover, it was observed that, for the same slope S0, the critical 

depth decreases as the side slope m increases, i.e. when the apex angle of the channel 

increases. For slopes S0 less than 0.0012, the critical depths are so high that they are 

outside the practical context. As a matter of fact, for the slope S0 = 0.0012, the critical 

depth already reaches more than 5m. 

Keyword: Triangular channel, critical flow, normal depth, critical depth, discharge, 

slope. 
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RESUME 

La relation fonctionnelle (yc;m;S0;;) = 0 a été bien définie et théoriquement établie 

pour le canal de forme triangulaire, où yc est la profondeur critique, m est la pente des 

parois latérales du canal, S0 est la pente du fond du canal,  est la rugosité absolue et  est 

la viscosité cinématique de l'eau en écoulement. Une étude approfondie de la fonction a 

révélé que la profondeur critique yc est régie par une équation de troisième degré sans 

terme du second ordre. Sa résolution analytique est très aisée lorsqu'on utilise la 

trigonométrie circulaire ou hyperbolique. 

L'article se termine par l'étude du cas particulier du canal lisse de forme triangulaire de 

90° d’angle d’ouverture en examinant l'équation qui régit la profondeur critique. Il s'est 

avéré que yc est donnée par une équation explicite, en fonction de m, S0 et  .En outre, il 

a été démontré que, pour un tel canal, plus la pente S0 augmente et plus la profondeur 

critique diminue. Il a été également observé que, pour une même pente S0, la profondeur 

critique diminue au fur et à mesure que la pente latérale m augmente, c'est-à-dire lorsque 

l'angle au sommet du canal augmente. Pour les pentes S0 inférieures à 0,0012, les 

profondeurs critiques sont si élevées qu'elles sortent du contexte pratique. En effet, pour 

la pente S0 = 0,0012, la profondeur critique atteint déjà plus de 5 m. 

Mots clés : Canal triangulaire, profondeur critique, profondeur normale, débit, pente. 

INTRODUCTION 

The triangular-shaped canal is a special case of the trapezoidal-shaped channel with a 

bottom width b equal to zero. Thus, the relations which govern the flow in the triangular 

channel can then be deduced from those of the trapezoidal channel by writing b = 0. 

Unlike other geometric shapes of channels, it is not possible for the triangular-shaped 

channel to have a relative roughness, such as /b for the rectangular and trapezoidal 

channels or /D for the circular conduit, where  is the absolute roughness, and D is the 

diameter of a circular conduit. These ratios are constant for a given channel or conduit. 

For the triangular-shaped channel, it is possible to form the ratio /y, where y is the flow 

depth. However, this ratio varies according to y, which is not convenient for calculations. 

It is only constant for a given depth of the flow. 

The most economical triangular-shaped channel, characterized by a minimum of wetted 

perimeter P, corresponds to the triangular shape with an apex angle of 90° (Chaudhry, 

2008).  

In practice, the triangular-shaped channel can be found in small hydraulic drainage 

systems. But its most widespread application concerns man-made lined irrigation ditches, 

raised up using pillars, that artificially supplies water to an area of dry land, or for the 

irrigation needs of a given agricultural plot. Depending on the upstream flow conditions, 

the ditch may be the seat of a supercritical flow of shallow depth, which does not then 
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allow siphoning of water and evacuate it outside the ditch. To remedy this situation, a 

hydraulic jump is created artificially by the installation of a sill at the upstream of a well-

defined height in order to raise the level of water and proceed to siphoning, either 

manually or automatically when the depth of the flow is sufficient to prime the siphon. 

The appearance of the hydraulic jump is obviously favoured by the sill but also by the 

supercritical flow regime associated with weak slopes of the ditch. These considerations 

have sparked the interest of many research workers to investigate both problems of 

normal depth and the hydraulic jump in the triangular-shaped channel (Hager and 

Wanoschek, 1985; Achour and Debabèche, 2003; Swamee and Rathie, 2004). 

Uniform flow is characterized by a particular depth called the critical depth. It is the depth 

which corresponds to a minimum specific energy for a given discharge, or to a maximum 

discharge for a given specific energy (Chow, 1959). Until now, the critical depth has been 

deduced from the criticality criterion which results in a Froude number equal to unity, 

whatever the shape of the channel or the conduit (Swamee, 1993; Vatankhah and Easa, 

2011; Chow, 1959; Henderson, 1966: French, 1985). But this criterion can give real 

critical depths as it can lead to fictitious critical depths. Although it is particular, the 

critical depth is a normal depth which must therefore depend on the characteristics of the 

flow and the geometry of the channel, such as the linear dimensions of the canal, the slope 

of the channel, the absolute roughness, and the kinematic viscosity of the flowing water. 

During our investigations, it was found that the literature did not provide any document, 

report or research article on this subject matter. This knowledge gap on this subject does 

not only concern the triangular-shaped channel but also all known forms of canals.  

It was not until the year 2020 that the authors proposed the study of the critical flow in a 

circular conduit, taking into account the effects of all flow and conduit parameters 

(Achour and Amara, 2020).  

The present study is a continuation of the authors' investigations of critical flow in open 

channels. It is interested in the triangular-shaped channel by attempting to examine the 

possibility of theoretically establishing the general relationship that governs the critical 

depth in this type of channel. 

GEOMETRIC PROPERTIES 

Figure.1 is a schematic representation of the definition of the studied triangular-shaped 

canal and the various parameters associated with it and adopted in this study. 
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Figure 1: Schematic representation of the studied triangular-shaped channel 

The geometric properties are the water area A, the top width T at the water surface, the 

wetted perimeter P, and the hydraulic radius Rh. These can be expressed for a triangular-

shaped channel respectively as: 

2A my=           (1) 

2T my=           (2) 

22 1P y m= +           (3) 

22 1
h

my
R

m
=

+
          (4) 

Where, m is the side slope of the channel computed as horizontal distance divided by 

vertical distance i.e. m = cotg where  is the angle formed by the side wall of the channel 

with respect to the horizontal, and y is the flow depth measured perpendicular to the 

bottom of the channel. The most economical triangular channel, corresponding to the 

minimum wetted perimeter, is obtained for m = 1 or  = 45 °, i.e. to an apex angle of 90°. 

According to Eqs. (3) and (4), the wetted perimeter and the hydraulic radius would 

become respectively as: 

2 2P y=           (5) 

2 2
h

y
R =           (6) 

SIMULTANEOUS VARIATION OF CRITICAL AND NORMAL DEPTHS 

In an earlier study, Achour and Amara (2020) established the relationship between the 

characteristics of critical and normal flows, applicable to all shapes of channel and 

conduit. This is expressed as: 
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Where  is the absolute roughness, and 
*

R  is the shear Reynolds number, expressed as: 

3

, 0* 32 2
h ngR S

R


=           (8) 

 is the kinematic viscosity of the flowing liquid. The subscripts “c” and “n” denote the 

critical and the normal flows respectively. 

Taking into account Eqs.(1) to (4), Eq.(7) becomes: 

( )

3/2 3 3/2 3
2

01/2 *
2

10.04
4 2 log ( 1 )

7.42 2 1

c n

nc
n

m y m y
S m
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 +

    (9) 

After some simplifications and rearrangements, Eq.(9) can be rewritten as follows: 

( )

5/2
5/2 2

01/4 *2

10.04
4 2 log ( 1 )

7.41
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y
y S m

y Rm
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−
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+  

          (10) 

On the other hand, Eq.(8) becomes: 

3

0* 2 3/416 (1 )
ng y S

R m


− −= +         (11) 

Eq.(10), along with Eq.(11), is the general relationship which links the characteristics of 

the critical and normal flows in a triangular-shaped channel. It is a function of six 

variables, without taking into account the acceleration due to gravity g which is a 

constant, such as: 

0( ; ; ; ; ; ) 0c ny y m S   =         (12) 

The graphical representation of the function (12) is not easy, but the particular case of the 

smooth triangular-shaped channel can facilitate the study of the function. This case will 

be considered in one of the following sections 

GENERAL CRITICAL FLOW RELATIONSHIP 

By writing n cy y= in Eq. (10), this leads to the general relationship which governs the 

critical flow in the triangular-shaped channel. The final result is: 

( )
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Introducing Eq.(11) into Eq.(13) results in: 

( )

2 3/4
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01/4 32
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4 2 0.6275(1 )
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Eq.(14) can be rewritten as: 
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Or: 
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Multiplying the two sides of Eq.(16) by 
3/2

cy , one may obtain: 

( )
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Let's define the following parameters: 
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Eq.(17) can be then expressed in the following form: 

3/2 1/2

1 2 0c cy y − − =         (20) 

The parameters 1 and 2 are well known, provided m, ,  and S0 are given. 

By adopting the following change of variables
1/2

cX y= ; Eq. (20) is reduced to: 

3

1 2 0X X − − =         (21) 



Critical flow in a triangular-shaped channel  

49 

Eq. (21) is a cubic equation without a second-order term. It can be easily solved for X by 

the circular or hyperbolic trigonometry (Anglin and Lambek, 1995). Once the real value 

of X has been calculated, the required critical depth is then
2

cy X= according to the 

change of variables previously adopted. 

SPECIAL CASE OF A SMOOTH TRIANGULAR-SHAPED CANAL 

Variation of the critical depth versus the normal depth 

In order to simplify both the study and the calculation, consider the case of a smooth 

triangular-shaped channel (→0), Eq.(10) becomes then: 

( )
1/4
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10.04
4 2 1 logc ny m y S
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= − +  
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        (22) 

The shear Reynolds number 
*

R is always governed by Eq.(11), i.e.: 

3

0* 2 3/416 (1 )
ng y S
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− −= +                       (11) 

Introducing Eq.(11) into Eq.(22) and simplifying results in: 
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Eq.(23) is plotted in Fig.(1) showing, for various slopes S0, the variation of the critical 

depth cy  with respect to the normal depth ny for a smooth triangular-shaped channel of 

side slope m = 1 corresponding to an angle  = 45° or to an apex angle of 90°. The flowing 

water is of kinematic viscosity 
6 2

10 /m s−
.  
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Figure 2: Variation of the critical depth cy with respect to the normal depth ny  for 

a smooth triangular-shaped channel of side slope m = 1 according to 

Eq.(23). Red curve: n cy y=  

 

Figure.2 shows two zones of flow regime namely, a subcritical zone for which cy  is less 

than ny , and a supercritical zone which corresponds to cy  greater than ny . All the 

curves in Fig. (1) originate in the subcritical zone. Some of them intersect the first bisector 

at a point which corresponds to n cy y= , and then end in the supercritical zone. This is 

the case in particular for the curves corresponding to the slopes S0 greater than or equal 

to 0.0012 for which the critical depth is of 5.06 m according to Eq.(23). The curves which 

correspond to the slopes S0 below this value do not have a point of intersection with the 

first bisector. This means that for these slopes, the channel is not the seat of a critical flow 

(Fig.2). It is worth noting that this finding needs to be completed. In fact, the curves of 

the subcritical zone intersect the first bisector at a point where the critical depth cy is 

extremely high. It is so high that its order of magnitude goes beyond the practical context. 

As an example, if we consider the case of the slope S0 = 0.0005, the calculation leads to 

cy = 1130 meters, which is a practical aberration and a weirdness that does not correspond 

to any reality. It can therefore be stated without any ambiguity that for the range of values 

of the flow rates used in practice there are slopes S0 which do not generate any critical 
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flow in the considered triangular-shaped channel. Fig. (1) also shows that the more the 

slope S0 increases, the more the point of intersection with the first bisector approaches 

shallow depths. As an example, for the slope S0 = 0.0015 the critical depth is cy = 1.758 

meter, while for the slope S0 = 0.002 the critical depth is yc = 0.523 meter.  

 

Figure 3: Case of some slopes that do not generate any critical state of the flow in a 

smooth triangular-shaped channel (m = 1). Red curve: yn = yc 

 

Critical flow depth relationship 

The critical depth relationship for the smooth triangular-shaped channel is obtained when 

writing n cy y= in Eq.(23). This then gives: 
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After some rearrangements, Eq.(24) becomes : 
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Eq.(25) is explicit for the critical depth sought yc, provided all other parameters are given 

namely: the slope S0 of the bottom channel, the side slope m, and the kinematic viscosity 

. The calculations made according to Eq. (25) have shown that, for a given smooth 

triangular-shaped channel, the critical depth decreases as the slope S0 increases. In 

addition, it was observed that, for the same slope S0, the critical depth decreases as the 

side slope m increases, i.e. when  decreases or when the apex angle increases. 

Note that in Eq.(25) the quantity L = [2/(gS0)]1/3 have the dimension of a length. It is 

therefore relevant to define L as the characteristic length of the critical flow in a smooth 

triangular-shaped channel.  

On the other hand, considering the critical depth yc as the characteristic length, i.e. L = 

yc, Eq. (24) is reduced to: 

* 2 3/4

1/42

04 2
0.6275

(1 )

(1 ) 10c

S

m

R m−

−+

= +         (26) 

The subscript “c” denotes the critical state of the flow. Rc
* is the critical shear Reynolds 

number expresses as: 

3

0* c

c

g y S
R


=         (27) 

Therefore, for a given smooth triangular-shaped channel, i.e. m and S0 are known 

parameters, the critical shear Reynolds number Rc
* is constant. 

SPECIAL CASE OF A ROUGH TRIANGULAR-SHAPED CANAL 

One may deduce from Eq.(10) the relation between the critical depth yc and the normal 

depth yn for the rough triangular-shaped channel when writing R*→. This yields:  

( )
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        (28) 

On the other hand, Eq.(28) allows deducing the critical depth relationship for a rough 

triangular-shaped channel when writing yn = yc..  Whence, after some simplifications: 
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Eq.(29) can be rewritten as : 
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Thus: 
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The critical depth is then governed by the following equation: 
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It is worth noting, on one hand, that for a given rough triangular-shaped channel, the 

critical depth is directly related to the absolute roughness. On the other hand, for a given 

rough triangular-shaped channel, i.e. m and S0 are known parameters, the ratio of the 

critical depth to the absolute roughness is a constant, i.e. yc/ = constant.  

The slant length at the critical state of the flow can be expressed as: 

21c cy m= +         (33) 

Combining Eqs.(32) and (33) results in: 
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Therefore, for a given rough triangular-shaped channel whose the side slope m and the 

slope S0 are known, the ratio of the slant length to the absolute roughness is constant, i.e. 

/c  = constant, or / c = constant. Given that the wetted perimeter at the critical 

state is Pc = 2 c then one may conclude that the ratio / cP is also constant. 
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CONCLUSIONS 

The functional (yc;yn;m;S0;;) = 0 relationship which links the characteristics of critical 

and normal flows in a triangular-shaped channel has been theoretically established [Eq. 

(10)],. where yc is the critical depth, m is the side slope, S0 is the channel bottom slope,  

is the absolute roughness, and  is the kinematic viscosity of the flowing water. This 

relation was deduced from the general equation valid for all the shapes of channels, 

established by the authors during a previous study. Given the large number of variables, 

the graphical representation of the function is not easy. To simplify its study, the special 

case of the smooth triangular-shaped channel with an opening angle of 90° was 

considered. For this case, it has been observed that there are S0 channel slopes which 

generate critical depths whose values are outside the practical context. It has been 

estimated that the slope S0 = 0.0012, for instance, generated a critical depth of more than 

5m. The more the slope S0 decreases below this value, the more the critical depth increases 

in a significant magnitude. The critical depths of a practical order of magnitude are thus 

obtained for slopes greater than the slope indicated above. 

The general relationship which governs the critical flow in a triangular channel has been 

deduced from the  function, previously defined, by writing yn = yc [Eq.(14)]. 

Observations and appropriate mathematical manipulations have revealed that yc is 

governed by a cubic equation without a second order term [Eq.(21)]. Its analytical 

resolution is uncomplicated and effortless when one uses circular trigonometry or 

preferably hyperbolic functions. An application of this relationship to the special cases of 

both the smooth and the rough triangular-shaped channels ended the present study 

[Eqs.(25) and (32)]. 
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