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ABSTRACT 

In a circular conduit of diameter D and of a given slope S0, two critical states of the flow 

may occur for two different discharges. The first one is observed at shallow depths 

while the second one settles down at greater depths. This statement is the result of the 

in-depth study carried out on the smooth circular conduit of diameter D = 1m, taken as 

an example. For this conduit, all slopes S0 greater than S0 = 0.00183813 generate the 

two critical states of the flow. Slopes that are less than this value do not generate any 

critical state of the flow. The study reveals that the slope S0 = 0.00183813  corresponds 

to the smallest slope that causes a single critical state of the flow. Other interesting 

conclusions, fundamental relationships as well as meaningful graphs are drawn from 

this study, after a detailed examination of the rational equations which govern the 

critical and normal flows.  
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RESUME 

Dans une conduite circulaire de diamètre D et de pente donnée, deux états critiques de 

l’écoulement peuvent se produire pour deux débits différents. Le premier état critique 

est observé aux faibles profondeurs, tandis que le second s’installe à des profondeurs 

plus grandes. Cette affirmation est le résultat approfondie menée sur la conduite 

circulaire lisse de diamètre D = 1m, prise comme exemple. Pour cette conduite, toutes 

les pentes S0 supérieures à S0 = 0.00183813 génèrent les deux états critiques de 

l’écoulement. Les pentes qui sont inférieures à cette valeur ne génèrent aucun état 

critique de l’écoulement. L’étude révèle que la pente S0 = 0.00183813 correspond à la 

plus petite pente qui génère un seul état critique de l’écoulement. D’autres conclusions 
intéressantes, des relations fondamentales et aussi des graphes significatifs sont tirés de 

l’étude, après un examen détaillé des équations rationnelles qui gouvernent les 

écoulements critique et normal. 

Mots clés : Conduite circulaire, profondeur critique, profondeur normal, pente, débit. 

INTRODUCTION 

The critical depth denoted yc, corresponds to a minimum specific energy for a given 

discharge or the depth at which the discharge is maximum for a given specific energy 

(Chow, 1959). Critical depth is an important parameter in understanding the 

characteristics of flow. If the actual depth is greater than critical depth, then the flow is 

considered as subcritical. The flow is said to be supercritical when the actual depth is 

less than the critical depth. The critical depth is also used in the classification of water 

surface profiles, along with the slope of the channel S0 and the normal depth yn. At 
critical flow conditions, the Froude number is equal to unity. It is this property that is 

used to determine the critical depth in open channels, also called the critical criterion 

(Swamee, 1993; Vatankhah and Bijankhan, 2010; Vatankha and Easa, 2011; Shang et 

al., 2019).  

The critical depth, even if it is a particular depth, is a uniform depth that should depend 

on the characteristics of the flow such as the slope S0 of the channel, the absolute 

roughness   characterizing the state of the inner wall of a channel or a conduit, and the 

kinematic viscosity   of the flowing liquid. According to our investigations, there is no 

study available on this subject.  

The depth of a flow is said to be normal when the free surface of the water is parallel to 

the bottom of the channel, meaning that the slope of the channel S0 and that Sw of the 
surface water are equal. The flow depth remains constant along the stream. When the 

gravitational force balances the friction drag along the channel, normal depth then 

occurs with no acceleration of the flow (Chow, 1959; Subramanya, 2007; Chaudhry, 

2008; Moglen, 2015). 
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The calculation of the normal depth in the channels is essentially based on the Manning 

formula which has remained the most popular in recent years (Manning, 1891). 

Applying this relation to channels of different shapes often leads to an implicit 

relationship, and many research workers have proposed approximate relationships 

according to the shape of the channel (Vatankha and Easa, 2011; Shang et al., 2019). 

These formulas are virtually unusable in their current form since they contain 

Manning’s n coefficient. It has been recognized, for a long time (Camp, 1946; Achour 

and Bedjaoui, 2006; Achour, 2014), that the flow resistance coefficients such that 

Manning's n varies according to the parameters of the flow, in particular the depth 

which is the sought unknown parameter of the problem. Select an appropriate value of 

the flow resistance coefficient without knowing the parameters thereof would be a real 
achievement. These formulas can only be used if the flow is in the rough zone for which 

the flow resistance coefficient is practically constant. In this case, one may then, as a 

first approximation, consider the value of the resistance coefficient given by the tables 

according to the nature of the material of the channel. To properly use these 

approximate relations, a preliminary calculation is necessary which consists in first 

calculating the Manning’s n coefficient. To do this without taking into account the 

normal depth which is the sought parameter, the Rough Model Method (RMM) is the 

most appropriate and remains the only method available to solve this type of problem 

(Achour, 2014; Achour and Sahtal, 2014; Achour 2015).  

The literature indicates that, regardless of the shape of the channel profile such as 

rectangular, trapezoidal, or circular, there is only one discharge that generates a unique 
critical state of the flow. However, the literature does not answer the question of how 

many discharges exist that generate so many critical flow states in a channel whose 

shape and slope are given. The present study gives a clear, reasoned, and persuasive 

answer to this question for the case of a circular conduit. The theoretical approach is 

based on two rational formulas, namely the dimensionally consistent uniform flow 

relationship and the criticality criterion. The first one has been derived from the Rough 

Model Method (Achour and Bedjaoui, 2006) that expresses the discharge Q with respect 

to all the parameters influencing the flow: 
0

( , , , , , )
h

Q S Rg A  . The effect of the 

kinematic viscosity  is evidenced through a Reynolds number which is closely related 

to the shear Reynolds number giving then a measure of the ratio of friction forces to 

viscous forces (Achour and Amara, 2020). The second one is worked out from the 

property of the critical flow for which the Froude number is equal to unity. Eliminating 

the discharge Q  between these two relations results in a firmly implicit but indubitable 

relationship:
*

0 0( , , , / , )c n fS D R    , where 
*

fR  is the shear Reynolds number at 

the full state of the conduit, c is the relative critical depth, and n is the relative 

normal depth. The relation was applied to a smooth circular conduit of diameter D = 

1m, taken as an example. The graph of the variation of the critical depth c versus the 

normal depth n for various values of the slope 0S revealed surprising properties of the 
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flow. The study ends with the examination of the behaviour of the critical depth under 

the effect of various slopes. A theoretical relationship is deduced from the previous one 

by simply writing n c  . The deduced relationship allowed the plotting of a graph 

which gave a clear overview of the behaviour of the flow, and interesting conclusions 

were drawn. 

RELATIONSHIP BETWEEN CRITICAL AND NORMAL DEPTHS 

The criticality criterion for all the known shapes of channels is translated by the 

following relation (Subramanya, 2009): 

2

3
1

cos

c

c

Q T

gA




            (1) 

Where  is the energy correction factor which can be reasonably considered to be equal 

to unity, Q is the discharge, TT is the top width at the water surface, g is the 

acceleration due to gravity, A is the water area and  is the inclination angle of the 

channel relative to the horizontal. The subscript “c” is related to the critical flow 
conditions. 

Knowing that 0 sinS  , where 0S is the channel slope, one may write: 

2

0 0 0
cos cos(arcsin ) sin(arccos ) 1S S S                           (2) 

Eq.(1) can be rewritten as : 

 
1/4

3/2 2

01c

c

g A S
Q

T


          (3) 

cT  and cA for a circular conduit can be written respectively as follows: 

2 ( )c cT D                         (4) 

 
2

( ) 1 ( )
4

c c c

D
A               (5) 

Where D is the internal diameter of the conduit and  ,   and   are functions 

exclusively dependent on the relative critical depth c . These functions are expressed 

respectively as: 
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(1 )c c c              (6) 

1( ) cos (1 2 )c c              (7) 

   

 1

2 1 2 1
( )

cos 1 2

c c c

c

c

  
 




 



          (8) 

where : 

c
c

y

D
            (9) 

cy  being the critical depth. 

On the other hand, the dimensionally consistent uniform flow relationship 

0( , , , , , )hQ S g A R  can be established using the Rough Model Method (Achour and 

Bedjaoui, 2006) or by combining the rational equations of Darcy-Weisbach (1854) and 

Colebrook (1939).  is the absolute roughness,   is the kinematic viscosity and hR  is 

the hydraulic radius.  For normal flow conditions, the above functional relationship is 

expressed as: 

, 0 *

,

10.04
4 2 log

14.8
n h n

h n

Q g A R S
R R

 
    

 
        (10) 

with: 

3

, 0* 32 2
h ngR S

R


         (11) 

The subscript “n” is related to the normal flow conditions. 

It was shown in an earlier study (Achour and Amara, 2020) that the dimensionless 

number 
*

R is closely related to the shear Reynolds number. Consequently, 
*

R  would 
give a measure of the ratio of the friction forces to the viscous forces. 

Since /hR A P , Eq.(10) becomes: 

3/2

01/2 *

,

10.04
4 2 log

14.8

n

n h n

A
Q g S

P R R

 
    

 
      (12) 

By equalizing Eqs.(3) and (12) and rearranging, results in: 
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3/2 3/2
0

1/2 2 1/4 *

0 ,

10.04
4 2 log

(1 ) 14.8

c n

n h nc

SA A

P S R RT

 
      

      (13) 

The greatest slope 0S considered in this study is 0 5 / 100S  . For this slope the 

quantity 
2 1/4

0(1 )S  is equal to 0.99937 and can therefore be considered as equal to 1. 

Thus, one may write 
2 1/4

01( ) 1S   for 0 5 / 100S  .Therefore, Eq.(13) becomes : 

3/2 3/2

01/2 *

,

10.04
4 2 log

14.8

c n

n h nc

A A
S

P R RT

 
    

 

      (14) 

where nP  is the wetted perimeter. 

This is the general relationship that combines both the characteristics of critical and 

normal flows, valid for all known channels and pipes shapes. For a partially filled 

circular conduit, the hydraulic radius can be expresses as: 

, [1 ( )]
4

h n n

D
R          (15) 

( )n  is given by Eq.(8) after substituting c by n . The wetted perimeter nP is as: 

( )n nP D        (16) 

( )n  is governed by Eq.(7) for c n  . 

Taking into account all these considerations, Eq.(14) is reduced to: 

   

 

 

3/2 3/2

1/2

3/2

0 *

( ) 1 ( )

( )

/ 10.04
8 ( ) 1 ( ) log

3.7[1 ( )]

c c

c

n n

n

D
S

R

   

 


   

 




 
   

 

      (17) 

with: 

3

0* 3/24 2 [1 ( )]n

gD S
R  


        (18) 

The filling rate n is defined as /n ny D   where ny is the normal depth. 
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According to Eq.(8) for c n  , one may write ( 1) 0n     which corresponds to 

the full state of the conduit. Consequently, Eq.(18) can be rewritten as: 

* * 3/2[1 ( )]f nR R          (19) 

where: 

3

0* 4 2f

gD S
R


        (20) 

The subscript “f” denotes the full state of the conduit. Finally, Eq.(17) is as: 

   

 

 

3/2 3/2

1/2

3/2

0 * 3/2

( ) 1 ( )

( )

/ 10.04
8 ( ) 1 ( ) log

3.7[1 ( )] [1 ( )]

c c

c

n n

n f n

D
S

R

   

 


   

   




 
      

(21) 

Eq. (21) expresses the functional relationship
*

0( , , , / , ) 0c n fS D R     . It is thus 

made up of five dimensionless parameters and it is doubly implicit with respect to c

and n  in particular. It encompasses all the parameters that influence the flow. The 

graphical representation of Eq. (21) relationship is not easy. Therefore, by choosing a 

conduit characterized by a diameter D, a slope 0S  and an absolute roughness   of 

given values, it is then possible to graphically observe the variation of the critical depth 

c as a function of the normal depth n . This is what the next section proposes. 

VARIATION OF THE CRITICAL DEPTH WITH RESPECT TO THE 

NORMAL DEPTH FOR A GIVEN CIRCULAR CONDUIT 

In this section, the smooth circular pipe ( 0  ) of diameter 1D m  is considered 

as an example. The objective is to observe the variation of the critical depth as a 

function of the normal depth while varying the slope 0S . The calculations were carried 

out according to the implicit Eq.(21). The obtained results have allowed plotting the 

diagram of Fig. 1. 
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Figure 1: Variation of the critical depth versus the normal depth in a smooth 

circular conduit for various slopes. 1D m , 0  , 
6 210 /m s  , 

I:Supercitical flow zone, II : Subcritical flow zone, Red line () : First bisector 

corresponding to n c   

Fig.1 indicates the supercritical zone of the flow located above the first bisector as well 

as the subcritical zone occupying the area below the first bisector. This latter represents 
all the points for which the flow is critical. Fig.1 shows that the curves pass through a 

maximum for c corresponding to n = 0.941 according to the calculations done. The 

in-depth examination of Eq.(21) and of Fig. 1 showed that the slope 0 0.00183813S 

corresponds to the smallest slope which generates a single critical state of the flow as 

shown in Fig.2. 

 

Figure 2: Variation of the critical depth versus the normal depth for the slope 

0 0.00183813S  , () 0.26944 0.27n c    , ,max 0.941( )n c   , ,max 0.72c   
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Slopes less than 0 0.00183813S   do not generate any critical state, while slopes 

greater than this value generate two critical states of the flow, corresponding to two 

different discharges. The first critical state is observed for shallower depths, while the 

second critical state is established at greater depths. The second critical state can be seen 

in Figure 1, while the first critical state is not clearly visible. This is represented on a 

larger scale in Figs. 3 for the slope 0 0.002S  . For the same slope, Fig.4 shows the 

second critical state observed at a higher depth. 

 

Figure 3: Variation of the critical depth versus the normal depth for the slope

0 0.002S  , () 0.12176 0.122n c     

 

Figure 4: Variation of the critical depth versus the normal depth for the 

slope 
0 0.002S  , () 0.47484 0.475n c    , 

,max 0.941( )n c   , 
,max 0.737c   

The criticality of the two states of the flow previously described was verified by the 

specific energy plot as shown on Figs.(5) and (6). The specific energy is written for any 

shape of channel as: 
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2

2
s

V
E y

g
          (22) 

V is the mean velocity of the flow of depth y. With V=Q/A, Eq.(22) is rewritten 

as: 

2

22
s

Q
E y

gA
        (23) 

Taking into account all the above mentioned relations for the circular conduit, Eq.(23) 

results in: 

   

*2
*

2 2

8

( ) 1 ( )
s

Q
E 

   
 


      (24) 

where 
* /s sE E D is the relative specific energy, / Dy   and 

*
Q  is the relative 

discharge expressed as 
* 5/Q Q gD . One can easily show that 

*
Q  is, to within a 

constant, the ratio of two known dimensionless numbers namely, the Reynolds number 

R characterizing the full state of the flow in the conduit and the Galileo number Ga. The 
final result being: 

*

4

R
Q

Ga


       (25) 

with 4 / ( )R Q D  and 
3 2

/Ga gD  representing the ratio of the gravity forces to 

the viscosity forces. 

The relative discharge 
*

Q can be computed according to the Eq.(12) applied for the 

circular conduit, Hence: 

 
 

3/2*

0 * 3/2

2 / 10.04
( ) 1 ( ) log

2 3.7 1 ( ) [1 ( )]f n

D
Q S

R


   

   

 
       

      (26) 

For the two states of the flow shown in Figs. (3) and (4), corresponding to 

0.12176 0.122  and 0.47484 0.475  , Eq.(26) gives : 

 
*

0.22288965Q   and 
*

0.01574231Q   respectively. 
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Figs. (5) and (6) clearly show that the relative specific energy is minimal for the two 

above relative discharges and that the corresponding relative depths are indeed those of 

the Fig.(3) and (4). 

 

Figure 5: Relative specific energy curve 
*

sE  according to Eq.(24) For 

*
0.22288965Q  . ()

*

sE minimum =0.6587 , 0.475  ,  

 

Figure 6: Relative specific energy curve 
*

sE according to Eq.(24). For 

*
0.01574231Q  .  ()
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sE minimum = 0.1634, 0.122  ,  
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VARIATION OF THE CRITICAL DEPTH WITH RESPECT TO THE SLOPE 

To express the general relationship which governs the critical flow in a channel or 

conduit of a given shape, one just have to replace the subscript "n" by the subscript "c" 
in the right-hand side of the Eq.(14), resulting in what follows after some 

simplifications: 

0 *

,

10.04
4 2 log

14.8

c

h cc

P
S

R RT

 
    

 

       (27) 

According to Eq.(11), 
*

R is such that: 

3

, 0* 32 2
h cgR S

R


         (28) 

For the circular conduit, Eq.(27) leads to : 

 

 

1/2

01/2 * 3/2

( ) / 10.04
8 log

3.7[1 ( )] [1 ( )]( )

c

c f cc

D
S

R

  

    

 
      

      (29) 

This is the relationship which governs the critical flow in the circular conduit. Let’s 

remember that 
*

fR is given by Eq.(20). Eq.(29) implicitly describes the functional 

relationship 
*

0( , / , , ) 0c fD S R    . The objective sought in this section is to 

observe the variation of the relative critical depth c as a function of the slope 0S . To 

do so, let's use once again the example of the smooth circular conduit of diameter D = 

1m flowing a liquid of 
6 2

10 /m s  as the kinematic viscosity. In this case, Eq. (29) 

has allowed establishing the graph of Fig. (7). The relative critical depth c is shown on 

the y-axis and the slope 0S is on the x-axis. 
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Figure 7: Variation of the relative critical depth c versus the slope 0S for the 

smooth circular conduit of Diameter D =1m. () Smallest slope that 

generates a single critical state of the flow, i.e 0 0.00183813S    

Fig. (7) gives a clear overview of the behaviour of the flow in the considered conduit. 

One can distinguish the red curve which corresponds to the first critical state occurring 

at shallow depths, and the blue curve which reflects the second critical state obtained at 
greater depths. Five zones of the flow are thus highlighted in figure 7 which can be 

interpreted as follows 

Zone 1: Subcritical flow zone. The slopes are medium or strong causing two critical 

states of the flow. Theses slopes are greater than the smallest slope 0 0.00183813S   

generating only one critical state of the flow. The first critical state occurs at the 

intersection of the vertical with the red curve. The second occurs at the intersection of 

the vertical with the blue curve. The flow is subcritical in zone 1, critical on the red 
curve, supercritical in zone 2, critical on the blue curve and becomes subcritical again in 

zone 3; 

Zone 2 : Supercritical flow zone; 

Zone 3: Subcritical flow zone; 

Zone 4: Subcritical flow zone of weak slopes, less than 0 0.00183813S  . These slopes 

do not generate any critical flow. The curve separating zones 4 and 5 corresponds to the 

maximum of the fictitious critical depth. 

Zone 5: Supercritical flow area associated with weak slopes, where the uniform flow is 
improbable. Due to the low slopes and the supercritical nature of the flow regime, zone 

5 can be the site of a hydraulic jump. 
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CONCLUSIONS 

The study involved an in-depth examination of the critical flow in a circular conduit. 

The main purpose was to know how the critical depth varies as a function of all the 

parameters influencing the flow, such as the slope of the conduit, the roughness of the 

internal walls of the conduit, and the kinematic viscosity of the flowing liquid. In order 

to achieve this goal, the study used a combination of two rational relationships, namely, 

the dimensionally coherent uniform flow relationship and the equation derived from the 

criticality criterion. 

This approach has led to the establishment of a conclusive and decisive relationship, 

albeit implicit, which can be translated by the following functional relationship: 
*

0( , , , / , ) 0c n fS D R      [Eq.(21)]. The main particularity of this relation is that it 

allows deducing the relationship between the critical depth and all the other parameters 

which govern the flow, by simply writing n c  , resulting in the following functional 

relationship 
*

0( , , / , ) 0c fS D R     [Eq.(29)]. Thanks to these relations, graphs 

revealing the behaviour of the flow in the smooth conduit of diameter D = 1m, taken as 

an example, have been elicited [Figs.(1) and (7)]. The graphs clearly show how the flow 
changes regimes, moving from subcritical to critical, from critical to supercritical and 

finally back to subcritical. The graphs also indicate for which slope of the conduit this 

change of regime takes place. It can also be observed that certain slopes of the conduit 

do not generate any critical state of the flow which in addition remains in the subcritical 

zone whatever the discharge. It can also worth noting that other slopes are the 

location of two critical states of the flow corresponding to two different discharges. One 

occurs at shallow depths, while the other appears at greater depths. Although unwieldy, 

the calculations nevertheless led to the conclusion that 0 0.00183813S   is the smallest 

slope of the conduit which generates a single critical state of the flow. All slopes less 

than this value do not cause any critical state of the flow, while slopes higher than this 

value generate two critical states of the flow that can be observed for each slope. 

It is preferable and recommended that this study be completed by further investigations 

on the behaviour of the critical flow in a circular conduit by examining the influence of 

the diameter and of the absolute roughness. This is what the authors will try to clarify 

during the second part of the study. 
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