

ANALYSE DE L'EVOLUTION DU NIVEAU DE LA MER MEDITERRANEE A PARTIR DES DONNEES HISTORIQUES DE MAREGRAPHES

ANALYSIS OF THE EVOLUTION OF THE MEDITERRANEAN SEA LEVEL FROM HISTORICAL TIDE GAUGE DATA

MAHDI HADDAD

Centre des Techniques Spatiales. 1 Avenue de la Palestine, BP 13 Arzew. Oran 31200. Algérie.

haddad_mahdi@yahoo.fr

RESUME

Les séries de données historiques de 34 marégraphes, situés le long des côtes de la Méditerranée, ont été analysées à l'aide de tests statistiques de tendance.

L'application du test de Man Kendall et sa version qui prend en compte la présence de la composante saisonnière, montre que la plupart des stations marégraphiques présentent des tendances significatives à l'élévation du niveau de la mer.

Les taux de variations annuels du niveau de la mer estimés par l'approche statistique de Sen sont assez similaires à ceux estimés par le service permanent du niveau moyen des mers (PSMSL), prouvant ainsi l'adéquation tests et approches statistiques choisis.

Les taux de changement estimés pointent vers une même conclusion: le niveau de la mer Méditerranée s'est élevé depuis la fin du 19^{ème} siècle.

Mots-clés: données historiques, marégraphie, tendance, test de Mann-Kendall et approche de Sen.

ABSTRACT

The historical data series of 34 tide gauges located along the Mediterranean coast were analyzed using statistical trend tests.

The application of the Man Kendall test and its version which takes into account the presence of the seasonal component, shows that most of tidal stations have significant trends in sea level rise.

The annual rates of sea-level changes estimated by using the Sen's approach are quite similar to those estimated by the Permanent Service for Mean Sea Level (PSMSL), thus demonstrating the adequacy of selected statistical tests and approaches.

The estimated rates of change point to the same conclusion: the Mediterranean sea level has risen since the end of the 19th century.

Keywords: Historical data, tide gauge, trend, Mann-Kendall test and Sen's approach.

INTRODUCTION

A l'origine, les marégraphes étaient déployés pour la navigation et la prédiction de la marée. Leur champ d'application s'est considérablement élargi de l'ingénierie côtière et de l'aménagement du littoral aux changements climatiques, dont le niveau de la mer est un paramètre essentiel.

Bon nombre d'observatoires marégraphiques actuels n'existent que depuis quelques dizaines d'années. Or, plus les données sont denses, complètes et précises, meilleurs sont les résultats obtenus. Pour dégager des tendances à long terme sur les composantes du niveau de la mer, il est indispensable de disposer d'observations de durée longue et aussi continues possible Douglas (2001). La recherche d'observations anciennes du niveau de la mer est donc primordiale afin de densifier et prolonger les séries de mesures actuelles (Woodworth, 2006).

Van Veen (1954) a été le premier à s'intéresser aux mesures "historiques" du niveau de la mer en construisant la série d'observations d'Amsterdam. Afin d'étudier les variations séculaires des composantes de marée, Cartwright (1971, 1972) s'intéressa également à ce type de mesures. A la fin des années 1980, Hannah (1988,1990) reconstruisit les séries d'observations marégraphiques pour plusieurs ports situées en Nouvelle-Zélande. En 1988, les moyennes annuelles

du niveau de la mer à Stockholm sont publiées par Eckman. A la fin des années 1990, de nouvelles séries pluriséculaires ont été reconstruites avec Liverpool (Woodworth, 1999a et 1999b) et Kronstadt (Bogdanov et al., 2000).

Actuellement, le service permanent du niveau moyen des mers (Permanent Service for Mean Sea Level - PSMSL) est responsable de la collecte, de l'analyse, de l'archivage et de la diffusion des moyennes mensuelles et annuelles du niveau de la mer, issues des marégraphes dans le monde. Cet organisme est membre de la Federation of Astronomical and Geophysical Data Analysis Services (FAGS), et se trouve sous l'égide du CIUS (Conseil international pour la science) et de l'AISPO (Association Internationale des Sciences Physiques de l'Océan). Il est localisé à l'Observatoire de Bidston, au Proudman Oceanographic Laboratory (POL), en Grande Bretagne.

Le principal objectif de cet article porte sur l'étude de l'évolution du niveau de la mer Méditerranée à partir de l'analyse des données historiques de marégraphes issues de la base de données du PSMSL. Il s'agit ici, à travers l'analyse des tendances de ces mesures pluriannuelles, de savoir objectivement s'il existe des changements significatifs à long terme, positives ou négatives, du niveau de la Méditerranée. A ce titre, deux tests ont été utilisés : Test de Mann-Kendall et Test saisonnier de Kendall. Par ailleurs, l'estimation des taux de changement des tendances linéaires jugées significatives est effectuée ici par l'utilisation de deux méthodes : approche de Sen et approche de Sen saisonnière. Ces taux de changement de l'ordre de quelques millimètres par an mettront en évidence l'élévation lente du niveau moyen de l'océan sous l'effet conjugué de la dilatation thermique due à l'effet stérique, de la fonte des glaces et des glaciers, des précipitations, etc.

Notons que la mer Méditerranée, assimilable à un "océan miniature", se caractérise par la présence de processus physiques complexes recouvrant un large spectre de variabilité spatial et temporel. Ces phénomènes océanographiques sont accentués par la nature de bassin semi-fermé. L'utilisation des mesures marégraphiques est une composante essentielle pour le suivi, la prévision et la gestion de cette mer.

PRESENTATION DES OUTILS STATISTIQUES UTILISES

Les techniques non-paramétriques présentées dans cette section sont applicables aux cas ou les données X_i d'une série chronologique peuvent être écrites sous la forme suivante :

$$X_i = f(t_i) + \varepsilon_i \tag{1}$$

où f(t) est une fonction continue monotone croissante ou décroissante. Les résidus ε_i , de même distribution, ont une moyenne nulle. La dispersion (ou variance) de la distribution est stationnaire. Les données peuvent être des données annuelles, mensuelles, hebdomadaire pour un site donné.

Tests de Mann-Kendall pour détecter les tendances

Plusieurs tests statistiques non-paramétriques existent afin de déterminer les tendances monotones à long terme. Le principal objectif de l'analyse des tendances est de savoir, objectivement, s'il existe un changement systématique significatif dans la série chronologique.

Le test de tendance de Mann-Kendall est un test non paramétrique utilisé pour identifier une tendance d'une série, même s'il existe une composante saisonnière dans la série. Ce test de tendance non paramétrique est le résultat d'une amélioration du test d'abord été étudié par Mann (1945) puis repris par Kendall (1975) et finalement optimisé par Hirsch et al. (1982) de façon à prendre en compte une composante saisonnière.

Pour une série qui ne présente pas une composante saisonnière, la statistique *S* de Mann-Kendall est calculée en utilisant la formulation suivante :

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} sgn(x_j - x_k)$$
 (2)

où x_j et x_k sont les valeurs mensuelles des mois j et k, avec j > k, avec l'espérance E(S) = 0, et :

$$sgn(x) = \begin{cases} 1 & si \quad x > 0 \\ 0 & si \quad x = 0 \\ -1 & si \quad x < 0 \end{cases}$$
 (3)

La variance de *S* est donnée par:

$$Var(S) = \frac{\left\{n(n-1)(2n+5) - \sum_{j=1}^{p} t_j(t_j-1)(2t_j+5)\right\}}{18}$$
 (4)

La valeur de S et Var(S) servent au calcul du test statistique Z et s'écrit sous la forme suivante:

$$Z = \begin{cases} \frac{S-1}{\sqrt{Var(S)}} & \text{si } S > 0\\ 0 & \text{si } S = 0\\ \frac{S+1}{\sqrt{Var(S)}} & \text{si } S < 0 \end{cases}$$
 (5)

La présence d'une tendance statiquement signifiante peut être évaluée en étudiant la valeur Z: si Z>0: tendance monotone croissante, si Z<0: tendance monotone décroissante.

La valeur de probabilité p du test statistique S peut être estimée en utilisant une fonction de distribution normale cumulée comme:

$$p = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{\frac{-t^2}{2}} dt \tag{6}$$

Pour des données sans tendance, la valeur p doit être égale à 0.5. La statistique S est étroitement liée au tau (τ) de Kendall, donnée par:

$$\tau = \frac{S}{\left[\frac{1}{2}n(n-1) - \frac{1}{2}\sum_{j=1}^{p}t_{j}(t_{j}-1)\right]^{1/2}\left[\frac{1}{2}n(n-1)\right]^{1/2}}$$
(7)

Pour prendre en compte la saisonnalité des données, nous définissons Var(S') comme :

$$Var(S') = \sum_{i=1}^{12} Var(S_i) = \frac{1}{18} \sum_{i=1}^{12} n_i (n_i - 1)(2n_i + 5) - \sum_{t_i} t_i (t_i - 1)(2t_i + 5) (8)$$

avec:

avec:

$$S_{i} = \sum_{k=1}^{n_{i}-1} \sum_{j=k+1}^{n_{i}} sgn(x_{ij} - x_{ik})$$
(9)

où x_{ij} et x_{ik} sont les valeurs du moins i de l'année j et k avec j > k. Le signe sgn se calcule de la même façon qu'en relation (2).

En utilisant l'approximation normale, Z' est définit comme :

$$Z' = \begin{cases} \frac{s'-1}{\sqrt{var(s')}} & \text{si } S > 0\\ 0 & \text{si } S = 0\\ \frac{s'+1}{\sqrt{var(s')}} & \text{si } S < 0 \end{cases}$$
(10)

Approches de Sen pour l'estimation du taux de changement

Après avoir détecter la présence ou non d'une tendance monotone. Nous voulons en estimer sa magnitude par le calcul du coefficient de Sen Q. Nous considérons que f(t) dans la relation (1) est égal à :

$$f(t) = Q.t + B \tag{11}$$

où Q est la pente et B une constante.

Un estimateur non paramétrique pour les coefficients de régression linéaire a été proposé par Sen (1968), afin d'estimer le coefficient d'une tendance existante (par exemple un taux de changement par an). Si nous avons n valeurs pour le couple (t_i, x_i) , le coefficient de la relation linéaire (11) peut être estimé comme suit : les N valeur $A_{ij} = (x_i - x_j)/(t_i - t_j)$ avec x (par exemple la hauteur de la mer) pour i = 1, 2, ..., n et j = 1, 2, ..., n; j > i et $t_i \neq t_j$. L'estimation du coefficient de Sen Q est est la médiane de ces valeurs A_{ij} . Ces N valeurs de A_{ij} sont rangées comme suit :

$$Q = \begin{cases} A_{(N+1)/2} & \text{si N est impair} \\ \frac{1}{2} \left(A_{N/2} + A_{(N+2)/2} \right) & \text{si N est pair} \end{cases}$$
 (12)

L'estimation de la constante B est calculée par une procédure similaire :

$$B(t) = f(t) - 0.t (13)$$

L'estimateur de la pente de Sen peut être remanié pour prendre en compte la présence de saisonnalité dans les données. Selon Hirsch et al. (1982), la pente de Sen saisonnière est calculée comme suit:

$$A_{(ij)k} = \frac{x_{ik} - x_{jk}}{ik - jk} \tag{14}$$

où x_{ik} est la hauteur de la mer à l'année i pour la saison k (k = 1,2,...,12). La pente de Sen saisonnière Q est la médiane des coefficients directeurs individuels des différents saisons considérés être homogènes.

DONNEES UTILISEES

L'étude de la tendance ne requiert pas nécessairement la manipulation directe des données marégraphiques horaires. En effet, le mécanisme de calcul de moyenne des données horaires sur un mois ou sur une année filtre les fluctuations de courte période observées dans les enregistrements marégraphiques, qu'elles soient de nature irrégulière (ondes de tempête, raz-demarée...) ou périodique (seiches, marées diurnes...). Les séries temporelles de moyennes mensuelles ou annuelles sont par conséquent appropriées à l'étude des variations séculaires du niveau des mers.

Dans le cadre de cette étude et dans le contexte évoqué ci-dessus, nous avons choisi d'analyser les séries de moyennes mensuelles du niveau de la mer issues de la base de données du PSMSL. Ces données sont de la catégorie 'RLR', autrement dit, celles qui ont subi la batterie de tests en vue de garantir une

continuité et une stabilité locale de la référence du marégraphe. La référence RLR est définie par rapport à un repère de marée donné, le TGBM (Tide Gauge Bench Mark), suivant un choix arbitraire effectué à l'origine pour que toutes les données de niveau marin, passées et à venir, à moyen terme, aient une valeur positive au-dessus de celle-ci, et pour qu'il n'y ait aucune ambiguïté possible avec d'autres références locales du marégraphe.

La sélection des séries choisies, au nombre de 34 (voir la figure 1), s'est effectuée sur la base des critères fixés par le PSMSL pour l'estimation des tendances à long terme. Ces critères de sélection sont comme suit:

- les séries de données avec une longue couverture temporelle sont utilisées,
- les données ayant subi divers contrôles visant à vérifier la continuité et la stabilité locale de la référence du marégraphe, ainsi que état de celuici.
- les stations possèdent au moins 70% des moyens annuels présents sur une période donnée.

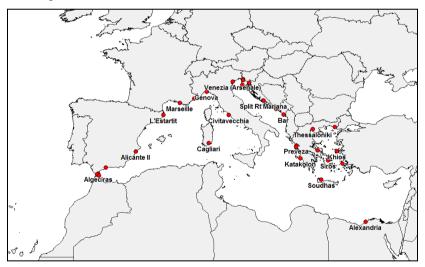


Figure 1 : Distribution géographique des stations marégraphiques.

Pour chaque station marégraphique, le fichier de données mensuelles répertorie la date (année-mois en forme décimale), la valeur moyenne du niveau de la mer pour le mois, le nombre de jours manquants de données au cours du mois et un flag pour l'attention. S'il n'y a pas de données pendant un mois, la valeur moyenne du niveau de la mer pour ce mois sera fixée à -99999 (donnée manquante). Si les données du mois ont été interpolées, le nombre de jours

manquants sera fixé sur 99. Un flag pour l'attention de «001» indique que les données doivent être traitées avec précaution et que le fichier de documentation associé doit être lu.

Le tableau 1 donne les statistiques descriptives des 34 stations. Les lignes du tableau sont classées par ordre du code PSMSL pays/station. Cet ordre commence essentiellement dans le détroit de Gibraltar et progresse le long du littoral méditerranéen dans la direction Est.

Tableau 1 : Statistiques descriptives des séries marégraphiques.

PSMSL Pays / station	Nom de la station	Latitude (°)	Longitude (°)	Obs.	Obs. avec données manquantes	Min. (mm)	Max. (mm)	Moy. (mm)	Ecart- type (mm)
220/011	Algeciras	36.116669	-5.433333	711	127	6794	7169	6955.027	57.460
220/021	Tarifa	36.008600	-5.602600	880	50	6741	7189	6993.313	75.996
220/031	Malaga	36.712700	-4.415460	840	149	6740	7124	6930.407	72.952
220/032	Malaga II	36.711840	-4.417090	282	4	6864	7220	7058.475	67.258
220/052	Alicante II	38.333333	-0.483333	456	14	6871	7259	7066.781	68.741
220/081	L'Estartit	42.050000	3.200000	312	0	6822	7275	7042.663	76.841
230/051	Marseille	43.278801	5.353860	1583	48	6666	7365	6930.183	86.002
230/081	Nice	43.695599	7.285500	468	51	6791	7250	7025.180	76.177
240/011	Cagliari	39.200000	9.166667	461	28	6754	7133	6963.859	67.238
250/011	Genova	44.400000	8.900000	1368	297	6628	7283	6952.170	76.757
250/031	Civitavecchia	42.050000	11.816667	312	8	6833	7235	7042.533	61.456
270/041	Venezia	45.416667	12.350000	300	13	6683	7241	7006.749	92.434
270/054	(Arsenale) Venezia (Punta Della Salute)	45.433333	12.333333	1104	65	6648	7368	7049.815	108.086
270/061	,	45.647361	13.758472	1704	230	6627	7354	6992.390	100.683
279/002	Koper	45.566667	13.750000	360	16	6757	7264	7015.299	77.631
280/006	Rovinj	45.083300	13.628300	714	3	6760	7376	7068.980	82.603
280/011	Bakar	45.300000	14.533333	1008	132	6748	7376	7068.024	91.110
280/021	Split Rt Marjana	43.508333	16.391667	716	8	6730	7253	7012.845	81.194
280/031	Split - Gradska Luka	43.506700	16.441700	730	0	6810	7375	7080.064	81.504
280/081	Dubrovnik	42.658300	18.063300	708	7	6794	7376	7091.980	79.808
281/011	Bar	42.083333	19.083333	319	0	6868	7363	7040.467	72.430
290\001	Preveza	38.959078	20.756628	564	130	6806	7336	7083.281	78.373
290\004	Levkas	38.834544	20.712108	562	80	6775	7370	7063.081	114.282
290/017	Katakolon	37.644822	21.319681	555	57	6860	7290	7078.004	81.840
290\021	Kalamai	37.023678	22.115839	564	145	6710	7240	7024.105	91.575
290\034	Khalkis North	38.472289	23.592631	564	67	6695	7255	6989.517	79.196
290/051	Thessaloniki	40.632542	22.934933	564	62	6696	7286	6987.375	94.306
290/065	Alexandroupolis	40.844139	25.878272	564	65	6791	7351	7052.844	82.200

290/071 Khios	38.371514 26.141189	561	82	6668	7206	6927.248	86.475
290/081 Siros	37.439969 24.945808	564	83	6674	7244	6993.813	92.393
290/091 Leros	37.129675 26.847994	561	102	6832	7282	7048.791	65.703
290/097 Soudhas	35.487453 24.082481	516	23	6822	7382	7060.600	80.806
330/071 Alexandria	31.216667 29.916667	755	33	6749	7276	7024.388	89.129
340/001 Ceuta	35.892400 -5.315890	874	28	6802	7182	6984.473	59.166

RESULTATS ET DISCUSSION

Les tests statistiques, choisis afin de détecter et d'estimer les tendances à long terme, ont été appliqués sur les 34 séries marégraphiques possédant au moins 70% de moyennes annuels sur une période donnée. Un programme informatique a été développé sous l'environnement de programmation "R" afin de détecter les tendances et d'estimer leur magnitude. Ce programme utilise les fonctions du package "trend" (Pohlert, 2016), qui est un ensemble de fonctions dédiées à l'analyse des séries temporelles. Les fonctions de "trend" peuvent servir de base pour la détection des tendances, l'estimation des taux de changement, détection des points de ruptures, estimation des corrélations partielles, etc. Dans ce qui suit, un récapitulatif des résultats obtenus pour les 34 séries marégraphiques est donné. Notons ici, que les valeurs mensuelles manquantes dans les séries marégraphiques ont été ignorées (voir le tableau 1).

Test de Mann-Kendall

Le test de Mann-Kendall a été appliqué pour la détection ou non d'une tendance monotone au sein des séries marégraphiques. Les résultats de l'application de ce test sont donnés par le tableau 2. Lorsque la p-value calculée est inférieure au niveau de signification $\alpha=0.05$, l'hypothèse nulle H_0 (Il n'y a pas de tendance dans la série) est rejetée et l'hypothèse alternative H_1 (Il existe une tendance dans la série) est retenue.

Le tableau 2 résume les résultats obtenus de l'application du test de tendance de Mann-Kendall sur les 34 séries marégraphiques.

Test de Mann-Kendall avec saisonnalité

Dans le cas du test de Mann-Kendall avec saisonnalité, on tient compte du caractère saisonnier de la série. Autrement dit pour des données mensuelles

ayant une saisonnalité de 12 mois, on ne va pas chercher à savoir s'il y une croissance au global sur la série, mais simplement si d'un mois de janvier à l'autre, d'un mois de février à l'autre, et ainsi de suite, il y une tendance. Pour ce test, on calcule d'abord l'ensemble des τ de Kendall pour chaque saison, puis on calcule un tau de Kendall moyen. La variance de la statistique peut être calculée en faisant l'hypothèse que les séries sont indépendantes (par exemple les valeurs des mois de janvier et des mois de février sont indépendantes). Le tableau 3 résume les résultats obtenus de l'application du test de tendance de Mann-Kendall avec saisonnalité sur l'ensemble des séries.

Tableau 2 : Résultats du test statistique de Mann-Kendall sur les 34 séries marégraphiques.

Pays / de la station données	S				
•			du test	nulle (H_0)	de la
station utilisées	11240	2210570 < 222	0.017	•	tendance
220/011 Algeciras 1943-200		22185786.333	0.017	.,	+
220/021 Tarifa 1943-2010		63644155.667	< 0.0001	rejetée	+
220/031 Malaga 1944-2013		36737888.667	< 0.0001	rejetée	+
220/032 Malaga II 1992-201:	6755	2399791.000	< 0.0001	rejetée	+
220/052 Alicante II 1960-1997	7 -1472	9626380.000	0.635	Non rejetée	-
220/081 L'Estartit 1990-201:	5 12852	3390487.333	< 0.0001	rejetée	+
230/051 Marseille 1885-2010	5 503942	402249772.000	< 0.0001	rejetée	+
230/081 Nice 1978-2010	5 28383	8085257.667	< 0.0001	rejetée	+
240/011 Cagliari 1896-1934	4 20893	9050902.333	< 0.0001	rejetée	+
250/011 Genova 1884-199	7 211644	136684412.667	< 0.0001	rejetée	+
250/031 Civitavecchia 1896-1922	2 3135	3136583.000	0.077	Non rejetée	+
270/041 Venezia (Arsenale) 1889-1913	3 5609	2640153.667	0.001	rejetée	+
270/054 Venezia (Punta 1909-2000	230566	124801981.333	< 0.0001	rejetée	+
Della Salute) 270/061 Trieste 1875-2010	407922	256100664667	-0.0001		
		356190664.667	<0.0001	rejetée	+
279/002 Koper 1962-199		4542396.333		Non rejetée	+
280/006 Rovinj 1955-2014		40018652.333	< 0.0001	rejetée	+
280/011 Bakar 1930-2013		74816433.000	< 0.0001	rejetée	+
280/021 Split Rt Marjana 1952-201	1 7043	39514591.000	0.263	Non rejetée	+
280/031 Split - Gradska Luka 1954-2014	44872	43310978.000	< 0.0001	rejetée	+
280/081 Dubrovnik 1956-2014	58345	38354886.333	< 0.0001	rejetée	+
281/011 Bar 1964-199	5144	3623426.667	0.007	rejetée	+
290/001 Preveza 1969-201:	7810	9109580.000	0.010	rejetée	+
290/004 Levkas 1969-201:	5 64857	12473007.000	< 0.0001	rejetée	+
290/017 Katakolon 1969-201:	5 44137	13741427.000	< 0.0001	rejetée	+
290/021 Kalamai 1969-201:	37790	8191520.667	< 0.0001	rejetée	+
290/034 Khalkis North 1969-201:	5 14861	13648828.333	< 0.0001	rejetée	+

1969-2015	52785	14080019.667	< 0.0001	rejetée	+
1969-2015	32293	13820197.667	< 0.0001	rejetée	+
1969-2015	47076	12239444.667	< 0.0001	rejetée	+
1969-2015	-25068	12387226.000	< 0.0001	rejetée	-
1969-2015	19324	10750609.333	< 0.0001	rejetée	+
1969-2011	10920	13330754.667	0.003	rejetée	+
1944-2006	61332	41903860.667	< 0.0001	rejetée	+
1944-2016	59598	67392980.000	< 0.0001	rejetée	+
	1969-2015 1969-2015 1969-2015 1969-2015 1969-2011 1944-2006	1969-2015 32293 1969-2015 47076 1969-2015 -25068 1969-2015 19324 1969-2011 10920 1944-2006 61332	1969-2015 32293 13820197.667 1969-2015 47076 12239444.667 1969-2015 -25068 12387226.000 1969-2015 19324 10750609.333 1969-2011 10920 13330754.667 1944-2006 61332 41903860.667	1969-2015 32293 13820197.667 <0.0001	1969-2015 32293 13820197.667 <0.0001

Tableau 3 : Statistiques de Mann-Kendall avec saisonnalité pour les 34 séries marégraphiques.

PSMSL Pays /	Nom de la station	Période des	Statistique	Var S'	Valeur p du test	Hypothèse nulle (H_0)	Sens de la
station		données utilisées	S'		du test	nune (H_0)	tendance
220/011	Algeciras	1943-2002	1331.000	155999.000	0.001	rejetée	+
220/021	Tarifa	1943-2016	7423.000	444189.667	< 0.0001	rejetée	+
220/031	Malaga	1944-2013	4036.000	261128.667	< 0.0001	rejetée	+
220/032	Malaga II	1992-2015	823.000	16505.667	< 0.0001	rejetée	+
220/052	Alicante II	1960-1997	-291.000	69251.667	0.269	Non rejetée	-
220/081	L'Estartit	1990-2015	1581.000	24685.000	< 0.0001	rejetée	+
230/051	Marseille	1885-2016	47047.000	2769162.333	< 0.0001	rejetée	+
230/081	Nice	1978-2016	2692.000	58278.000	< 0.0001	rejetée	+
240/011	Cagliari	1896-1934	2523.000	63251.667	< 0.0001	rejetée	+
250/011	Genova	1884-1997	20645.000	964047.667	< 0.0001	rejetée	+
250/031	Civitavecchia	1896-1922	244.000	22910.000	0.107	Non rejetée	-
270/041	Venezia (Arsenale)	1889-1913	503.000	19478.333	0.000	rejetée	+
270/054	Venezia (Punta Della Salute)	1909-2000	21238.000	880667.333	< 0.0001	rejetée	+
270/061	Trieste	1875-2016	37906.000	2500688.000	< 0.0001	rejetée	+
279/002	Koper	1962-1991	31.000	33038.333	0.865	Non rejetée	+
280/006	Rovinj	1955-2014	3188.000	276999.333	< 0.0001	rejetée	+
280/011	Bakar	1930-2013	41832.000	804104.000	< 0.0001	rejetée	+
280/021	Split Rt Marjana	1952-2011	1500.000	271295.333	0.004	rejetée	+
280/031	Split - Gradska Luka	1954-2014	3972.000	294894.000	< 0.0001	rejetée	+
280/081	Dubrovnik	1956-2014	5667.000	272425.000	< 0.0001	rejetée	+
281/011	Bar	1964-1991	545.000	24670.333	0.001	rejetée	+
290/001	Preveza	1969-2015	782.000	65749.333	0.002	rejetée	+
290/004	Levkas	1969-2015	5492.000	84984.000	< 0.0001	rejetée	+
290/017	Katakolon	1969-2015	4255.000	96580.333	< 0.0001	rejetée	+
290/021	Kalamai	1969-2015	3888.000	59147.333	< 0.0001	rejetée	+
290/034	Khalkis North	1969-2015	1443.000	97705.667	< 0.0001	rejetée	+
290/051	Thessaloniki	1969-2015	4968.000	101112.000	< 0.0001	rejetée	+
290/065	Alexandroupolis	1969-2015	3087.000	98993.000	< 0.0001	rejetée	+

290/071	Khios	1969-2015	4198.000	87366.000	< 0.0001	rejetée	+
290/081	Siros	1969-2015	-2532.000	88741.333	< 0.0001	rejetée	-
290/091	Leros	1969-2015	1867.000	72996.333	< 0.0001	rejetée	+
290/097	Soudhas	1969-2011	1398.000	95312.667	< 0.0001	rejetée	+
330/071	Alexandria	1944-2006	7542.000	284224.667	< 0.0001	rejetée	+
340/001	Ceuta	1944-2016	5955.000	460473.000	< 0.0001	rejetée	+

Il ressort des tableaux 2 et 3 que la plupart des séries marégraphiques présentent des tendances significatives (niveau de signification $\alpha=0.05$), à l'exception celles des quatre stations : Alicante II, Civitavecchia, Koper et Split Rt Marjana. La présence d'une tendance significative sur la série de la station de Split Rt Marjana n'est mise en évidence que par le test saisonnier de Mann-Kendall. Cette tendance n'est pas significative au global sur la série, elle l'est simplement admissible d'un mois de janvier à l'autre, d'un mois de février à l'autre, et ainsi de suite. A la singularité de la série de la station de Siros (S' < 0); tendance monotone décroissante), l'ensemble des séries présentant des tendances significatives sont croissantes, prouvant ainsi, si nécessaire encore, l'élévation du niveau de la mer Méditerranée.

Taux de changement

Les magnitudes des tendances monotones détectées sont estimées par l'approche de Sen saisonnière. A titre d'exemple, la figure 2 représente la pente de sen saisonnière obtenue pour la station marégraphique de Marseille ayant la plus grande couverture temporelle de 126 ans.

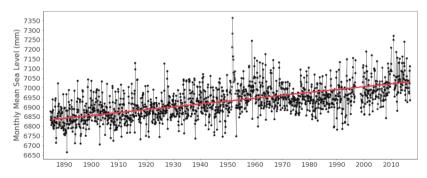


Figure 2 : Valeurs moyennes mensuelles de la station marégraphiques de Marseille et Pente de Sen.

Le tableau 4 donne les taux de changements estimés dans le cadre de cette étude par l'utilisation de l'approche de Sen saisonnier ainsi que celles estimées par le PSMSL pour des périodes de données quasi-identiques et par l'utilisation d'une simple régression linéaire. Les écarts en valeurs absolues, entre les tendances estimées par le PSMSL et celles estimées par l'utilisation de l'approche de Sen, y compris les 4 stations où la l'hypothèse de la présence d'une tendance a été rejetée, sont représentés par la figure 3. Ces écarts, en valeurs absolues, varient entre 0.01 mm/an et 0.90 mm/an. Les valeurs importantes sont enregistrées pour les stations où les tendances estimées par le PSMSL ont des erreurs standards considérables ; le cas des séries de Preveza, Siros et de Soudhas (voir figure 3). La série relative à la station de Siros, fait l'exception, en ayant un taux de variation du niveau moyen de la mer négatif (approche de Sen : -2.52 mm/an, PSMSL : -3.33 mm/an). La figure 4 représente la répartition géographique des tendances du niveau moyen de la mer estimées par l'utilisation de l'approche de Sen.

Tableau 4 : Taux de variations annuelles estimées par l'utilisation de l'approche de Sen saisonnier et par le PSMSL.

PSMSL		Période	Pente de	Période des	Tendance		
Pays /	Nom de la station	des données	Sen	données	estimée par	Std.	Ecart
station		utilisées	(mm/an)	utilisées par	le PSMSL	(mm/an)	(mm)
Station				le PSMSL	(mm/an)		
220/011	Algeciras	1943-2002	0.29	1944-2001	0.40	0.24	-0.11
220/021	Tarifa	1943-2016	1.25	1944-2015	1.06	0.38	0.19
220/031	Malaga	1944-2013	1.08	1944-2012	0.71	0.66	0.37
220/032	Malaga II	1992-2015	2.34	1993-2015	2.25	1.07	0.09
220/052	Alicante II	1960-1997	-0.14	1960-1995	-0.72	0.53	0.58
220/081	L'Estartit	1990-2015	3.50	1990-2015	3.58	0.64	-0.08
230/051	Marseille	1885-2016	1.25	1885-2015	1.32	0.13	-0.07
230/081	Nice	1978-2016	2.73	1978-2014	3.07	0.51	-0.34
240/011	Cagliari	1896-1934	2.03	1897-1934	1.91	0.28	0.12
250/011	Genova	1884-1997	1.23	1884-1996	1.18	0.07	0.05
250/031	Civitavecchia	1896-1922	0.34	1897-1921	0.81	0.69	-0.47
270/041	Venezia (Arsenale)	1889-1913	2.48	1889-1913	2.41	1.03	0.07
270/054	Venezia (Punta Della	1909-2000	2.41	1909-2000	2.47	0.26	-0.06
	Salute)						
270/061	Trieste	1875-2016	1.30	1875-2015	1.29	0.10	0.01
279/002	Koper	1962-1991	0.11	1962-1991	-0.14	0.61	0.25
280/006	Rovinj	1955-2014	0.79	1956-2014	0.89	0.27	-0.10
280/011	Bakar	1930-2013	1.00	1930-2013	1.19	0.27	-0.19
280/021	Split Rt Marjana	1952-2011	0.44	1953-2011	-0.33	0.54	0.77
280/031	Split - Gradska Luka	1954-2014	0.95	1955-2014	1.11	0.46	-0.16
280/081	Dubrovnik	1956-2014	1.38	1956-2014	1.65	0.45	-0.27
281/011	Bar	1964-1991	1.43	1965-1990	1.23	0.87	0.20
290/001	Preveza	1969-2015	0.42	1969-2015	-0.20	1.02	0.62
290/004	Levkas	1969-2015	6.29	1970-2015	5.76	0.65	0.53
290/017	Katakolon	1969-2015	3.12	1969-2014	2.83	0.67	0.29
290/021	Kalamai	1969-2015	4.38	1973-2011	4.32	0.58	0.06

290/034	Khalkis North	1969-2015	0.31	1969-2015	0.59	0.86	-0.28
290/051	Thessaloniki	1969-2015	3.88	1969-2013	3.72	0.67	0.16
290/065	Alexandroupolis	1969-2015	2.11	1969-2014	2.08	0.59	0.03
290/071	Khios	1969-2015	4.06	1975-2012	3.66	0.86	0.40
290/081	Siros	1969-2015	-2.52	1969-2012	-3.33	1.16	0.81
290/091	Leros	1969-2015	1.47	1977-2015	1.29	0.50	0.18
290/097	Soudhas	1969-2011	1.15	1969-2011	0.25	1.24	0.90
330/071	Alexandria	1944-2006	1.78	1944-2006	1.80	0.24	-0.02
340/001	Ceuta	1944-2016	0.71	1945-2015	0.62	0.22	0.09

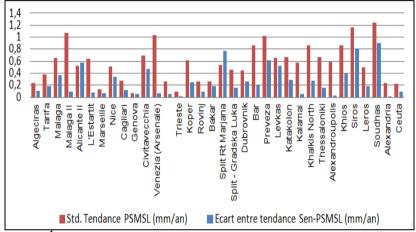


Figure 3 : Écarts, en valeurs absolues, entre les tendances estimées (approche de Sen) et celles du PSMSL.

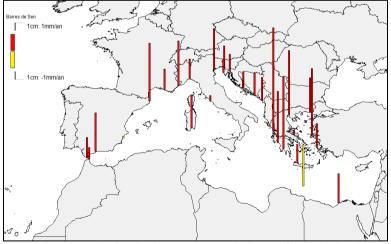


Figure 4 : Tendances estimées du niveau moyen de la mer à partir des données RLR mensuelles.

CONCLUSION

L'objectif principal dette étude était de mettre en évidence, sur la base de tests statistiques, les importantes modifications du niveau de la mer Méditerranée à travers l'analyse des séries de données historiques de marégraphes. 34 séries marégraphiques issues de la base de données du Service Permanent du Niveau Moyen des Mers (PSMSL), ont été utilisées. Ces séries à résolution mensuelles ont une couverture temporelle non uniforme; de 23 ans à 126 ans. Les évolutions significatives au sein de ces séries sont mises en évidence par l'utilisation des tests statistiques de Mann-Kendall.

Après avoir détecté la présence des tendances monotones, les taux moyens des changements annuels ont été estimés par l'approche non paramétrique de *Sen*. Ces taux sont en parfaite cohérence avec ceux estimés par le PSMSL, sauf dans le cas où les tendances estimées par le PSMSL présentent des erreurs standards considérables.

L'analyse globale des tendances estimées montre une élévation nette du niveau de la mer près des côtes de la Méditerranée. Ce résultat semble suffisant pour supposer la présence, depuis quelques années, d'une nouvelle phase climatique à l'échelle du bassin méditerranée, où l'élévation du niveau moyen de la mer est l'une de conséquences.

Face au phénomène du changement climatique, cette étude montre l'efficacité des tests statistiques à déceler les tendances des séries marégraphiques longues. Les résultats obtenus peuvent paraître primaires, mais ce sont ces tendances qui, pour les spécialistes en climatologie, présentent une importance capitale pour la recherche de corrélations entre les événements climatiques que subit la Terre. Prise séparément, l'analyse d'une série d'observations marégraphiques peut ne pas être concluante. Mais l'étude de l'ensemble des données historiques de marégraphes disponibles, pointent tous sans équivoque, vers une même conclusion: le niveau de la mer Méditerranée s'est élevé depuis la fin du XIXème siècle.

REMERCIEMENTS

L'auteur tient à remercier le Service Permanent du Niveau Moyen des Mers (Permanent Service for Mean Sea Level, PSMSL) pour la mise à sa disponibilité des séries temporelles marégraphiques. L'auteur ne saurait non

plus passer sous silence la contribution précieuse du Centre des Techniques Spatiales - Algérie, ayant permis la réalisation de l'étude.

REFERENCES BIBLIOGRAPHIQUES

- BOGDANOV V.I., M.YU. MEDVEDEV, V.A. SOLODOV, YU A. TRAPEZNIKOV, G.A. TROSHKOV, A.A. TRUBITSINA, 2000. Mean monthly series of sea level observations (1777-1993) at the Kronstadt gauge. Reports of the Finnish Geodetic Institute, 34 pp.
- CARTWRIGHT D.E, 1971. Some ocean tide measurements of the 18th century, and their relevance today. Proceedings of the Royal Society of Edinburgh, B, vol. n°72, pp. 331-339.
- CARTWRIGHT D.E, 1972. Secular changes in oceanic tides at Brest (1711-1936). Geophysical Journal of the Royal astronomic Society, vol. 30, pp. 433-449.
- EKMAN M. 1988. The world's longest continuous series of sea level observations. Pure and Applied Geophysics, vol. 127, pp. 73-77.
- HANNAH J, 1988. Analysis of mean sea level trends in New Zealand from historical tidal data. Rep. 2, Dep. Of Surv. And Land. Inf. Wellington, New Zealand, 41 pp.
- HANNAH J, 1990. Analysis of Men Sea Level Data From New Zealand for the Period 1899-1988. Journal of Geophysical Research, vol. 95, n°B8, pp. 12399-12405.
- HIRSCH R.M., J.R. SLACK AND R.A. SMITH, 1982. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resources Research, vol.18 (1), pp.107-121.
- KENDALL M.G. 1975. Rank correlation methods. Griffin, London.
- LE PROVOST C., 1994. A new in situ reference data set for ocean tides. https://www.aviso.altimetry.fr/en/multimedia/publications-and-links/newsletter/newsletter03/new-data-set-for-tides.html.
- MANN H.B, 1945. Nonparametric tests against trend. Econometrica, vol.13, pp.245-259.
- POHLERT T., 2016, A Non-Parametric Trend Tests and Change-Point Detection. https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf
- SEN P.K., 1968. "Estimates of the regression coefficient based on Kendall 'S tau". Journal of the American statistical association, vol. 63, pp. 1379-1389.
- VAN VEEN J. 1954. Tides-Gauges, Subsidence-Gauges and Flood-Stones in the Netherlands. Geologie en Munbouw (New Serie), vol. 16, pp. 214-219.

- WOODWORTH P.L, 1999a. A study of changes in high water levels and tides at Liverpool during the last two hundred and thirty years with some historical background. Proudman Oceanographic Laboratory Repport, pp. 56-62.
- WOODWORTH P.L, 1999b. High waters at Liverpool since 1768: the UK's longest sea level record. Geophysical Research Letters, vol. 26, pp. 1589-1592.
- WOODWORTH P.L, 2006. Some important issues to do with long-term sea level change. Philosophical Transactions of the Royal Society A, vol. 364, pp. 787-803.