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ABSTRACT

The fluctuation of free surface water in surge tanks is of great interest for its
design. For this, various mathematical models exist for the analysis of mass
oscillations in a surge shaft following valve adjustment. This paper describes a
finite element technique using weighted residuals method for the solution of the
governing differential equations. Three weighting functions are applied and the
results are compared with those from classical methods. First, a relatively
simple case of surge analysis with a sudden load rejection in the penstock is
analyzed but neglecting tunnel friction. Then friction is included for test and
comparison. The results indicate that the proposed numerical approach leads to
an accurate simulation of the water surface motion.

Keywords: mass oscillation, surge tank, finite element method, weighted
residuals.

INTRODUCTION

The water surface motion in a surge tank following closure or opening of valves
has received considerable attention since several years. Being an important
hydraulic structure surge tank is an integral part of any hydroelectric scheme in
which, owing to changes in load and running condition, the rate of flow of
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water in the supply pipeline may be required to undergo rapid changes. The
behaviour of the water surface in a surge tank is therefore complex and is
influenced by several factors. A complete and satisfactory solution of the
governing differential equations which predict the height of the surges at any
given instant of time is restricted to a few simple problems of instantaneous
shutdown (Eydoux, 1917; Jaeger, 1954). For this, depending on the complexity
of the problem and assumptions made, a variety of methods are available for the
approximate surge analysis. These methods may be classified as analytical,
analogue, graphical or numerical. Generally analytical solutions are only
available for a few special cases while graphical methods (as Schoklitsch
approach) have become obsolete and rarely used (Escande, 1950). The
numerical methods in particular have generally received wide acceptance with
the advent of computers with large accessibility. Hens it becomes now possible
to obtain quick and fairly accurate numerical solutions much more economically
than with any other method.
The numerical approaches have almost exclusively used some form of finite
difference approximation of the basic equations and several schemes based on
an iterative solution have been reported (Jaeger, 1977). Latter work
concentrating mainly on developing refinements of existing methods (France,
1977; 1980).  One of the powerful numerical approach used in engineering
science and which has been extensively developed in fluid mechanics during the
three past decade is that of Finite Element Method (Cannor and Brebbia,1976;
Zienkiewicz and Taylor, 2000; Hervouet, 2007). In hydraulic transient field the
FEM was successfully applied to simulate water hammer problems based on
elastic theory model (Szymkiewicz and Mitosek, 2004). With presence of surge
tank in hydraulic system where rigid column theory can by applied, McKeogh
and France (1983) and France (1984) were first to apply finite element
technique with satisfactory results for case of instantaneous valve operations.
He applies weighting residual process to the second order differential equation
and leads to a three points recurrence formula which is not auto starting method.
Noting also that this approach leads to relatively complicate algebraic equations
and some difficulties to trait case of slow valve operations.
In this paper we present a simple technique based on finite element method in
time domain for the computation of water level oscillation in a surge tank. For
this, partial discretization approach is used to solve the decoupled form of the
ordinary differential equations governing the mass oscillation problems. The
FEM is tested for various weighting residual functions with Runge-Kutta
method well known for his accuracy in these typical problems.
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BASIC EQUATIONS

The governing equations describing the mass oscillations of the whole body of
water in the pipeline and surge tank is based upon three fundamental equations
(i) the dynamic equation (ii) the equation of continuity and (iii) an equation
giving the velocity of the water surface. (Jaeger, 1954; Escande, 1971;
Bergeron, 1970; Featherstone and Nalluri, 1995):

(i) Dynamic equation:

02  Rwz
dt

dw

g

L
(1)

(ii) Continuity equation:

QvAwS  (2)

(iii) Water surface velocity:

dt

dz
v  (3)

Where L  and S  are respectively the length and the area of the supply tunnel,
w  the flow velocity in the tunnel, A  the area of the surge tank, z the elevation
of the water level in the surge tank relative to the reservoir water level, Q  the

discharge in the penstock to the turbines, R  the friction factor (tunnel and
throttle) and t  the time. The (+) sign for the friction loss is taken when the flow
is from the reservoir into the surge tank and the (-) sign is taken when the flow
reverses.
Combining equations (1), (2) and (3) leads to:
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Equation (4) is a nonlinear second order differential equation. Direct integration
of equations (1) and (2) is only possible in a few special cases (Jaeger, 1977). If
the friction losses in the tunnel are included, the only case where a direct
solution of equation (4) is possible is that of total closure or sudden complete
rejection of turbine load (Escande, 1971). For real practical problems involving
various flow annulations time function  tQQ   and multiple surge tank
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forms, the resolution of the mass oscillations mathematical model is only
possible using numerical methods.

FINITE ELEMENT TECHNIQUE

Numerical approach using a finite element method in time was successfully
used for resolution of unsteady problems. In this technique, called partial
discretization (Zienkiewicz and Taylor, 2000), we use time approximation
scheme to convert ordinary differential equations to algebraic equations. This is
achieved by discretising time domain and applying the weighting residual
process within each time increment leading to a recurrence formula (France,
1984). To solve the mass oscillations problem we will consider the decoupled
equations (1), (2) and (3) which can be written in general form:

0 fKaaC  (5)

Were C  and K  are constant or variable dependent parameters and dtdaa / .
Discretising equation (5) into finite element of time of length t , the variable
a  approximated in terms of its nodal values is in the form (Reddy, 1993)





n

i
ii Naata

1

ˆ)(         (6)

In which ia are the unknown values at the nodes and iN  the shape

(interpolation) function defined continuously within each element (Figure 1).+ 1
1                                                 1

n                                             n+1= /
Figure 1: Shape function for two points recurrence formula

The objective is to obtain an approximation for 1na  given the value of na  and

the forcing vector f  acting in the interval of time t . The shape functions and
their first time derivatives can be written in terms of local variables as:
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10   tt  /
 1nN ttN n  /         (7)

1nN ttN n  /1


Substituting equation (6) into (5) and applying a typical weighted residual
equation for an element of length t (Cannor and Brebbia, 1976;  Zienkiewicz
and Taylor, 2000) yields :

      

1

0

1111 0 dfNaNaKNaNaC nnnnnnnn
 (8)

In which   is any weighting function. As the problem is an initial value one,

na is assumed known (or can be determined from steady state conditions), then

equation (8) will serve to determine 1na  approximately. Substituting the

interpolation function and his corresponding derivative into equation (8) gives
the required recurrent formula (Zienkiewicz and Taylor, 2000):
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Introducing   as a weighting parameter and f  as average value of f given by:

 dd
1

0

(10)

 ddff 
1

0

(11)

We can write immediately:

     01// 1   faKtCaKtC nn        (12)

Hence 1na can be solved providing the variation of water level with time. To

solve for 1na  one initial conditions na have to be specified which is the initial
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water level in the surge tank at t = 0 and will therefore be equal to the friction
head lost under steady state conditions. Many weighting functions can be
inserted into expressions (10) to yield  which is then substituted into the basic
recurrence formula (12). Three weighting functions are considered, namely
Galerkin method N  ( 3/2 ), point collocation using the Dirac function

i   ( 1 and 0 ) and Subdomain collocation 1  ( 2/1 ).

Note that equation (1) is nonlinear hens the numerical approach using equation
(5) is solved iteratively at each time step.

APPLICATION

The purpose of this section is to compare and evaluate the accuracy of the
numerical model presented herein in solving the mass oscillation equations. The
data of the hydraulic installation tested is taken from literature (Escande, 1950)
which are as follow (table 1):

Table 1: Summary of the installation data

Area of the surge tank 300 m²
Tunnel cross section 10 m²
Length of the tunnel 4000 m
Initial steady flow 20 m3/s
Steady state head losses 4.105 m

The numerical tests are carried out for a frictionless case and the case
considering the friction losses in the tunnel pipe for an instantaneous load
rejection i.e. a sudden valve closure.

Test I: Frictionless case

This test aims to compare the numerical results with the analytical solution.
Neglecting head losses in the system the water level oscillations in the surge
tank are sinusoidal. Results for this case when a time step st 2 is chosen
are recapitulated in table 2.
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Table 2: Comparison of results (test I)

Method Amplitude (m) Relative error (%)
Analytical 7.37335018 -
Point collocation ( 0 ) 7.47894532 1.432
Point collocation ( 1 ) 7.26950644 1.408

Subdomain collocation ( 2/1 ) 7.37332905 2.87  10-4

Galerkin ( 3/2 ) 7.33845457 0.47
Runge-Kutta 4 7.37332829 2.9  10-4

Escande 7.385919 0.171

It is thus noted that the precision of the solution obtained by the finite element
method is related to the type of weighting function. The best solution is
obtained by the subdomain collocation method where a relative error of 2.87x
10-4 is noted. It was shown by Zienkiewicz and Taylor (2000) the minimum of
truncation error is obtained for 2/1 . This fact explains why this numerical
approach (Crank-Nicolson scheme) possesses higher accuracy. For this case the
Runge-Kutta method gives a similar numerical solution but for a higher
computational effort.
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Figure 2: State space of results (test I)

Reporting results of the temporal history of the water surface fluctuation on a
state space ( zw, ) one can see that the curve takes a closed ovoid form
(Figure 2). The curve thus illustrates balance between the kinetic and potential
energy at every moment without dissipation.
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Test II: Frictional case

The introduction of the dissipative term into the computation makes the
dynamic equation (1) nonlinear. Thus the use of the general equation model (5)
imposes a linearization of equation (1). This is carried out while posing

wRK  in the numerical model and an iterative process is necessary at each

time step to ensure convergence of the numerical computation.
The results of water level variation with respect to time in the surge tank are
then reported on figure (3) and comparison between various numerical schemes
is reported on table 3 for the first upsurge.
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Figure 3: Temporal history of water level in the surge tank (test II)

We can note then for different weighting functions in finite element model the
numerical results are very close. A comparison with the analytical solution
available in this case for the maximum surge (Jaeger, 1977) shows that relative
errors are so small and the numerical solution computed meaning finite element
techniques is accurate. However it can be seen from table 3 that discrepancies
noted for the numerical schemes are reduced in Galerkin's and subdomain's
method. Because of the purely explicit character of the point collocation
approach ( 0 ), which correspond to the Euler method, the numerical
scheme gives the least accuracy and presents a high sensitivity to the time step
choice.
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Table 3: Comparison of numerical solutions (test II)

Method Upsurge (m) Relative error (%)
Analytical 4.92812573 -
Point collocation ( 0 ) 5.02057558 1.88
Point collocation ( 1 ) 4.86189238 1.34

Subdomain collocation ( 2/1 ) 4.94046605 0.25
Galerkin ( 3/2 ) 4.91410536 0.28
Runge-Kutta 4.92975339 0.03

Comparatively to the Runge-Kutta method the finite element technique (with
first order recurrence formula) leads to a little less precision due to the fact that
the first one uses a fractional step approach and the second one is to a single
step. This can be achieved using a high order shape function leading to a multi-
step method. The computed solution is reported on a state plan (figure 4).
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Figure 4: State space of results (test II)

Due to the physical dissipation for this case the solution curve presents a spiral
form converging towards the center which corresponds to the static regime.

CONCLUSIONS

The complete analysis of hydraulic transients protection in pressurized flow is
usually carried out using numerical solution of the classical water hammer
partial differential equations. However, in certain cases when a surge tank is
used in the hydraulic system the elastic effects can be dropped and the
phenomenon is called mass oscillations. Due the assumption that the tunnel and
the liquid are rigid the mathematical model describing the phenomenon are a set
of nonlinear ordinary differential equations. Thus a closed-form solution is
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available only for few practical cases and a numerical integration is required.
The finite element method using a weighted residual process has been presented
for the analysis of mass oscillations in surge tanks. Various weighting functions,
point collocation, subdomain collocation and Galerkin's method was tested and
compared to other numerical and analytical solution. For linear shape function
the technique of finite element leads to two points recurrence formula.
Depending on the weighting parameter , the numerical scheme can be explicit
or implicit. For the case of frictionless flow it has been shown that finite
element technique gives accurate results and is in well agreement with the
Runge-Kutta method and the exact sinusoidal solution. In this case the
subdomain collocation method leads to the best results. For the case of frictional
flow a very small differences between weighting functions was noted in the
evaluation of the maximum upsurge. However, for the two cases simulated the
point collocation method presents the least accuracy compared to the others
weighting functions.
The numerical approach presented herein is simple and accurate for the
resolution of the nonlinear mass oscillation equations. A high precision
computation can be achieved using a highest order shape function but requires
more computation efforts.
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