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ABSTRACT 

Managing drought and water scarcity concerning underground water resources requires 

modeling methodologies with a simple yet effective framework. Due to temporal and 

financial constraints, machine learning models (MLMs) are crucial in this context. This 

study aims to predict daily underground water levels (UWL) in Azarshar Plain, Tabriz, 

Iran, using three MLMs (SVM, GEP, MLP). Covering 126 annual datasets for 34 wells 

from 2018 to 2021, various combinations were tested with different UWLs and lag times. 

Performance evaluation metrics including RMSE, MAE, R2, and DDR were employed. 

Results show satisfactory accuracy for all three MLMs, with SVM, GEP, and MLP being 

more accurate in 53%, 26%, and 20% of cases respectively among the 34 wells. The input 

configuration with a lag-time of two days (M2) emerged as the most optimal, yielding the 

most accurate simulations. Average values of RMSE, MAE, R2, and DDR for M2 during 

the testing period were calculated as 0.2457, 0.2077, 0.9482, and 31.53 respectively. In 

conclusion, these MLMs offer viable alternatives to numerical models for managing and 

predicting UWL, facilitating better water resource management in areas prone to drought 

and water scarcity. 

Keywords: Simulation, Aquifer, Prediction, Performance Assessment, Groundwater.  

INTRODUCTION  

Groundwater sources are widely acknowledged as a paramount and invaluable reservoir 

of water resources in the realm of hydrogeological studies (Hountondji et al., 2020; Mehta 

et al., 2023; Srivastava et al., 2023; Deb, 2024). Groundwater resources are highly 

vulnerable to over-extraction, contamination especially by nitrate (Koussa and Berhail, 

2021), and climate change, making their protection essential for ensuring long-term water 
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security and ecological balance (Kouassi et al., 2013; Ouhamdouch et al., 2016; Aroua, 

2018; Zegait et al., 2021; Nakou et al, 2023). Unregulated withdrawal and pollution from 

industrial, agricultural, and domestic sources threaten groundwater quality, necessitating 

stringent conservation measures and sustainable management practices (Belhadj et al., 

2017; Laghzal et al., 2019). Promoting natural groundwater recharge through watershed 

protection, afforestation, using flood waters, and wetland restoration helps maintain 

aquifer levels and prevents depletion in arid and semi-arid regions (Chibane and Ali-

Rahmani, 2015; El Moukhayar et al., 2015; Benmmoussat et al., 2017; Remini, 2018; 

Qureshi et al., 2024). Artificial recharge techniques, such as managed aquifer recharge 

(MAR), infiltration basins, and other sources of supply, are critical solutions for 

replenishing groundwater reserves, mitigating drought impacts, and sustaining water 

availability for future generations (Gaaloul, 2015; Abaidia and Remini, 2020; Later and 

Labadi, 2024).  

Climate fluctuations significantly affect both the quantity and quality of groundwater, 

posing challenges for sustainable water resource management (Zella and Smadhi, 2010; 

Ouis, 2012; El Fellah-Idrissi et al., 2017). Variations in precipitation patterns and 

prolonged droughts reduce groundwater recharge, leading to declining water tables and 

increased reliance on deep aquifers. Rising temperatures intensify evapotranspiration, 

further exacerbating groundwater depletion in arid and semi-arid regions. Additionally, 

fluctuations in rainfall influence contaminant transport, as extreme precipitation can lead 

to increased infiltration of pollutants, while reduced recharge can concentrate dissolved 

salts and pollutants, deteriorating water quality. The combined effects of drought, 

excessive pumping, and contamination risks highlight the urgent need for adaptive 

groundwater management strategies in response to climate variability (Bahir et al., 2015). 

Aquifer systems must be thoroughly characterized with a high degree of precision to 

accurately determine the volume of available water resources. Indeed, understanding the 

volume of underground water resources is crucial for sustainable water management, 

ensuring the balance between extraction and natural recharge to prevent overexploitation 

and depletion (Baiche et al., 2015; Argaz, 2018). In addition, accurate assessment of 

aquifer reserves enables informed decision-making for water supply planning, 

agricultural irrigation, and industrial use, particularly in arid and semi-arid regions where 

groundwater is a primary resource. Moreover, precise knowledge of underground water 

volumes helps in mitigating the impacts of droughts and climate change, allowing for the 

development of adaptive strategies to secure long-term water availability. Furthermore, it 

is essential for controlling land subsidence risks, maintaining ecological stability, and 

ensuring the resilience of communities dependent on groundwater resources. Geological 

and hydrogeological investigations serve as essential tools for accurately evaluating 

aquifer resources (Meroni et al., 2021).  

It is equally imperative to monitor groundwater quality to gain a comprehensive 

understanding of the intricate relationship between geochemical processes and water 

composition (Ngouala et al., 2016). This knowledge is essential for the implementation 

of effective and sustainable groundwater management strategies, ensuring the long-term 

preservation and responsible utilization of this critical resource. 
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The accurate identification and fundamental utilization of these resources, particularly in 

arid and semi-arid regions, exert a substantial influence on the sustainable advancement 

of numerous agricultural, societal, and economic endeavors (Umrigar et al., 2024; 

Alshehri and Rahman, 2023). The diminution in precipitation and the occurrence of 

drought in recent years have posed a formidable challenge to the replenishment cycle of 

subterranean aquifers, leading to a significant lowering of water levels while affecting the 

aquifers’ recharge (Haouchine et al.; 2015; Nichane and Khelil, 2015). Concomitant with 

the escalating human expectations and the expansion of the agricultural sector, the decline 

in rainfall has been paralleled by a heightened extraction of subterranean water resources 

(Ahmed et al. 2023; Li et al., 2019). The aforementioned factors have ultimately 

culminated in a depletion of subterranean water resources and a reduction in the UWLs 

(Rajput et al., 2023). Numerous models have been employed for the prediction of UWLs, 

including ancestral methods (Kebizi et al., 2023). In contemporary hydrogeological 

practices, the development of a streamlined aquifer model and its subsequent simulation 

are deemed imperative. This is essential not only for the implementation of management 

scenarios but also for the selection of viable strategies to effectively administer 

groundwater resources, along with the determination of appropriate withdrawal rates 

from groundwater reservoirs (Dadhich et al., 2021).  

The categorization of models employed for simulating groundwater levels predominantly 

falls into two principal groups: physical models and data-driven models (Bahmani and 

Quarda, 2021). For physical models, achieving a suitable synthesis of aquifer parameters 

is imperative to delineate the spatial variability of groundwater within the aquifer. 

Acquiring this information poses challenges, as it necessitates costly on-site surveys, 

consequently augmenting computational expenses. An alternative approach to physical 

modeling is offered by data-driven models, which facilitate accurate predictions without 

the need for an extensive and costly calibration process, and wherein the underlying 

physical mechanisms are not explicitly considered during model development (Sattari et 

al., 2018). Data-driven models, exemplified by soft computing and machine learning 

tools, present a viable means to surmount the constraints associated with physical models 

(Kantharia et al. 2024; Yoon et al., 2011). 

The optimization of agricultural practices and the assessment of the potential for high-

quality groundwater resources hold paramount significance. While physical and 

mathematical models serve as fundamental and precise instruments for ascertaining 

hydrogeological parameters and comprehending system processes, they are encumbered 

by cost and time constraints. Additionally, they necessitate comprehensive and diverse 

input data, resulting in a substantial computational workload and protracted model 

development and execution timelines. In recent years, in order to overcome the 

aforementioned limitations, MLMs have emerged and evolved as capable tools for 

simulating system behavior without the requirement for extensive domain expertise 

(Kaushik and Kumar, 2023; Leon et al., 2023; Abbaszadeh Shahri et al., 2022). A concise 

overview of the MLMs that have been implemented is provided in Table 1. 
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Table 1: Literature review of MLMs on UWL prediction 

Reference Model name Results 

Yao et al. 

(2024) 

CEEMDAN–BiGRU–SVR–MWOA 

(CBSM) framework 

The CBSM as a new and effective 

method is proposed for accurately 

simulating and predicting lake 

water levels. 

Yi et al. 

(2024) 

Random Forest (RF), ANN, SVM, 

Gradient Boosting, and Extreme 

Gradient Boosting (XGBoost) 

The XGBoost outperformed other 

models. 

Mohammed 

et al. (2023) 
Genetic Algorithm-ANN (GA-ANN), 

Independent Component Analysis-ANN 

(ICA-ANN), extreme learning machine 

(ELM), 

outlier robust extreme learning machine 

(ORELM) 

The results demonstrate that the 

closest point to the reference point 

is related to the ORELM method 

 Long short-term memory (LSTM), 

gated recurrent unit (GRU), 

bidirectional LSTM (BiLSTM) 

Deep learning models performed 

well for annual-type of ground 

water level 

 SVM, Generalized Regression Neural 

Network (GRNN), Decision Tree (DT), 

Random Forest (RF), Convolutional 

Neural Network (CNN), Long Short-

Term Memory (LSTM), Gated 

Recurrent (GRN) Network 

The RF had the superior outcomes 

 ANFIS, Improved Alpha-Guided Grey 

Wolf optimization (IA-GWO) 

ANFIS-IA-GWO model had better 

results 

Mozaffari et 

al. (2022) 

PSO (Particle Swarm Optimization), 

SVR 

The SVR-PSO hybrid model can 

be used as a superior tool for 

simulation. 

Vadiati et 

al. (2022) 

ANN, fuzzy logic (FL), ANFIS, SVM the ANFIS model showed slightly 

better performance 

Vu et al. 

(2021) 

LSTM The LSTM is reliable to predict 

missing water level data. 

Seifi et al. 

(2020) 

ANN, ANFIS, SVM, grasshopper 

optimization algorithm (GOA), cat 

swarm optimization (CSO), weed 

algorithm (WA), GA, krill algorithm 

(KA), PSO 

ANFIS-GOA and SVM had, 

respectively, the best and worst 

performances among other models 

Jeihouni et 

al. (2019) 

ANN, ANFIS the ANN was the best model. 

Afzaal et al. 

(2019) 

Multilayer perceptron (MLP), LSTM, 

convolutional neural network (CNN) 

The MLP performed better 

Das et sl. 

(2019) 

Back Propagation Neural Network 

(BPNN), ANFIS 

ANFIS had better performance 

than BPNN 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/support-vector-machine
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Ebrahimi et 

al. (2017) 

ANN, multi linear regression (MLR), 

SVR, wavelet-ANN (WNN), wavelet-

MLR (WLR), wavelet-SVR (WSVR) 

The WNN had accurate results. 

  

Simulation of UWLs using MLMs reveals high accuracy within the study area, 

underscoring MLMs' potential. Notably, MLMs suit scenarios with limited data diversity, 

crucial when instrumentation lacks, necessitating accurate predictive modeling with 

minimal datasets.  The Azarshahr Plain in East Azerbaijan Province, Iran, plays a crucial 

role socio-economically, particularly due to its groundwater resources serving as a 

primary water source for agriculture, industry, and urban needs. However, there are 

notable challenges in accurately simulating UWLs using MLMs in this area, possibly 

stemming from various factors. Therefore, intensified research efforts and contemporary 

methodologies are necessary for UWLs modeling in the Azarshahr Plain. The primary 

objective of using machine learning models (SVM, GEP, and MLP) for predicting 

underground water levels (UWL) in the Azarshahr Plain is to develop accurate daily UWL 

predictions. This is critical for managing water resources, especially in regions facing 

drought and water scarcity, by providing efficient alternatives to numerical models for 

better decision-making in groundwater management 

The novel aspects of this research include applying multiple machine learning models to 

UWL prediction and evaluating their performance using comprehensive metrics across 

different lag-time configurations. The focus on daily predictions in a drought-prone area 

adds practical significance to the study 

MATERIAL AND METHODS 

Case study 

Azarshahr plain, situated in the northwestern region of Iran, has experienced a 

conspicuous decline in UWL in recent years. Given the critical significance of this matter 

and the geographical proximity of Azarshahr plain to the Lake Urmia watershed, it 

becomes imperative to undertake a comprehensive investigation into the fluctuations of 

UWL within this locale. In the investigated region, 34 monitoring wells were utilized to 

assess the UWL, and their data spanning from September 23, 2018, to September 23, 

2021, were employed for the purposes of this study. The dataset comprises 126 daily 

observations for each well over the three-year period. The ensuing table presents the 

geographic attributes, along with pertinent statistical features, pertaining to the water 

levels observed in each well throughout the specified temporal duration. Figure 1 

illustrates the temporal variation of the measured UWL at the beginning and end of the 

study period. Within the figure, the positions of the observation wells are denoted by the 

"+" sign. 
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Table 2: A summary of wells statistics at the Azarshar plane, Tabriz  

Well 

NO. 
X(utm) Y(utm) Max Min STDEV VAR Mean CV 

1 583882 4183425 28.670 23.880 0.970 0.941 27.872 0.035 

2 579493 4184475 22.030 12.540 2.119 4.491 17.504 0.121 

3 579640 4185452 15.650 9.430 1.191 1.418 13.109 0.091 

4 586366 4181777 29.220 25.570 0.821 0.674 28.012 0.029 

5 577574 4192337 2.940 0.780 0.518 0.268 2.079 0.249 

6 580250 4193150 16.450 7.100 2.116 4.476 12.506 0.169 

7 576388 4183773 3.990 0.920 0.530 0.281 2.091 0.253 

8 575019 4184860 4.230 0.850 0.670 0.449 3.133 0.214 

9 577379 4183616 5.000 0.560 0.875 0.765 2.607 0.336 

10 577363 4183608 11.600 6.800 0.879 0.773 9.760 0.090 

11 586933 4182783 12.370 8.750 0.805 0.648 10.293 0.078 

12 586218 4177195 28.000 14.670 2.562 6.565 25.241 0.102 

13 569717 4191646 11.650 5.130 1.537 2.362 8.124 0.189 

14 580299 4179724 3.250 0.970 0.391 0.153 2.141 0.183 

15 574438 4186002 16.640 5.020 2.151 4.628 11.264 0.191 

16 580516 4187705 4.020 1.720 0.517 0.267 2.927 0.177 

17 583350 4179279 7.880 2.350 0.774 0.600 6.042 0.128 

18 582118 4184209 7.790 2.710 1.195 1.428 5.841 0.205 

19 581126 4183380 21.600 14.610 1.517 2.301 18.334 0.083 

20 582112 4184211 11.500 6.380 1.267 1.605 8.768 0.144 

21 580506 4186885 24.150 16.770 1.715 2.941 20.988 0.082 

22 577202 4179979 7.480 4.200 0.632 0.400 6.046 0.105 

23 578045 4180332 22.870 7.660 2.609 6.808 14.838 0.176 

24 576729 4178811 7.350 2.850 0.974 0.948 6.010 0.162 

25 576300 4180122 8.450 5.870 0.656 0.430 7.499 0.087 

26 574844 4177649 5.860 3.250 0.486 0.236 5.183 0.094 

27 579864 4173986 8.510 6.990 0.339 0.115 7.839 0.043 

28 584480 4183477 29.780 1.340 10.520 110.669 14.984 0.702 

29 576166 4176016 13.940 12.310 0.464 0.216 13.277 0.035 

30 578841 4182026 25.000 13.470 2.523 6.365 20.038 0.126 

31 582650 4185785 9.600 6.500 0.526 0.277 7.639 0.069 

32 584079 4185578 8.150 7.360 0.190 0.036 7.755 0.024 

33 585470 4187716 21.690 14.000 2.433 5.919 15.865 0.153 

34 582980 4190811 8.000 5.380 0.645 0.416 6.613 0.098 
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Figure 1: Measured water level counters at the beginning and end of the period 

In this study, data preprocessing involved the following steps: (1) handling missing data: 

any missing data points were filled using interpolation methods to maintain the continuity 

of the time series; (2) outliers: outliers were detected through statistical methods and were 

either removed or replaced using mean/median values to prevent them from skewing the 

predictions. 

An overview on SVM 

The inception of the SVM algorithm can be attributed to Vapnik (1995), representing a 

seminal contribution to the field of machine learning. Concurrently, Cortes and Vapnik 

(1995) introduced a significant refinement in the form of the prevailing standard rendition 

of SVM, known as the "soft margin." This modification has since played a pivotal role in 

enhancing the algorithm's practical utility. The SVM constitutes a category of supervised 

learning models endowed with dedicated learning algorithms. These algorithms are adept 

at scrutinizing data, discerning underlying patterns, and are amenable for employment in 

tasks pertaining to classification and regression analysis. It is pertinent to note that the 

inherent challenge within the SVM arises when attempting to delineate sets that exhibit a 

lack of linear separability within the confines of a finite-dimensional space, despite the 

problem's original formulation within such a space. To address the issue of non-linear 

separability, a proposed strategy entails the transformation of the initial finite-

dimensional space into a considerably higher-dimensional space. This maneuver is 

hypothesized to facilitate a more tractable separation of sets within the newly constructed 

space. In order to maintain a manageable computational burden, the SVM approaches 

incorporate specific mappings designed to facilitate the straightforward computation of 

dot products in terms of original space parameters. These mappings are expressed in 

relation to a kernel function denoted as K(x,y), chosen to align with the problem at hand. 

In the context of a higher-dimensional space, hyper-planes are defined as the locus of 

points characterized by a constant dot product with a vector existing within that space. 
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The vectors defining these hyper-planes can be selected as linear combinations involving 

parameters αi, which correspond to transformed feature vectors present in the dataset. 

With this choice of hyper-plane formulation, the points within the feature space, 

subsequently mapped onto the hyper-plane, adhere to the following mathematical 

relationship: 

 ∑ αik(xi,x)=constanti=1                          (1) 

It is imperative to note that when the kernel function K(x, y) diminishes as the variable y 

departs from the point x, each term within the summation serves as a metric for assessing 

the proximity of the test point x to its corresponding data point xi. This formulation allows 

for the collective sum of kernels mentioned above to serve as a quantification of the 

relative proximity of each test point to the data points x originating from either of the sets 

that require discrimination. Various kernel types are elaborated upon in Table 3 for 

reference and application (Baudhanwala et al., 2024; Aderemi et al., 2023; Fuladipanah 

and Majediasl, 2021; Fuladipanah et al., 2021). 

Table 3: Different Kernel functions  

Function Expression 

Linear K(xi,xj)=(xi,xj) 

Polynomial K(xi,xj)=[(xi,xj)+1]
d 

Radial basis function K(xi,xj)=exp[-
‖xi-xj‖

2

2σ2
] 

Sigmoid K(xi,xj)=tanh[-α(xi,xj)+c] 

An overview on the GEP 

The GEP is a computational technique used in evolutionary algorithms for symbolic 

regression, function optimization, and machine learning.  The GEP focuses on evolving 

and discovering mathematical expressions and symbolic models, making it particularly 

useful for problems where the functional form of the solution is unknown or complex. 

Chromosome structure, function sets and terminal sets, encoding, evolutionary process, 

fitness function can be counted as the key elements of the GEP structure. In the GEP, 

solutions are represented as linear strings of symbols called "chromosomes." These 

chromosomes consist of genes, each of which represents a component of the solution. 

Genes can be of fixed length or variable length, allowing for flexibility in modeling 

complex functions. The GEP employs a set of functions and a set of terminals. Functions 

represent mathematical operations (e.g. addition, subtraction, multiplication), while 

terminals represent constants or variables from the problem domain. The combination of 

functions and terminals defines the set of possible mathematical expressions. Genes in a 

GEP chromosome encode a mathematical expression or a symbolic model. The 

combination of genes in a chromosome forms an expression tree, where functions act as 

internal nodes and terminals act as leaf nodes. The GEP utilizes genetic operators such as 

mutation, recombination (crossover), and selection to evolve populations of 
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chromosomes over generations. During evolution, new expressions are generated by 

modifying or recombining existing genes or sub-expressions. The fitness function 

evaluates how well a chromosome's encoded expression approximates the desired 

behavior or solves the problem at hand. The goal of GEP is to evolve chromosomes with 

high fitness values (Ferreira, 2001; Azamathulla et al., 2018; Birbal et al., 2021; Majedi-

Asl et al., 2022; Balahang and Ghodsian, 2023; Leon et al., 2023; Fuladipanah et al., 

2023). Figure 2 presents a general step of the GEP model.   

 

Figure 2: Flowchart of the GEP model 

Overview on the MLP 

The MLP is a class of artificial neural networks that have proven to be versatile and 

effective in various machine learning applications. It, a type of feed-forward neural 

network, has gained prominence in solving complex problems across diverse domains 

such as image recognition, natural language processing, and financial forecasting. The 

MLPs are characterized by their layered architecture, consisting of an input layer, one or 

more hidden layers, and an output layer. The architecture of an MLP is defined by the 

arrangement and connectivity of its layers. Each layer contains a set of nodes (neurons) 
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that process information and pass it to the next layer. The input layer receives the raw 

input data, while the output layer produces the final prediction or classification. Hidden 

layers, with their non-linear activation functions, enable the network to learn complex 

relationships in the data. The training of MLPs involves adjusting the weights and biases 

to minimize the difference between the predicted output and the true output. This process, 

known as back-propagation, utilizes optimization algorithms such as gradient descent to 

iteratively update the network parameters. The choice of activation functions, learning 

rates, and regularization techniques plays a crucial role in training the network effectively 

and preventing over-fitting. Activation functions introduce non-linearity into the network, 

enabling it to learn complex patterns. Common activation functions include sigmoid, 

hyperbolic tangent (tanh), and rectified linear unit (ReLU). The choice of activation 

function influences the network's capacity to capture and represent intricate relationships 

within the data (Azamathulla and Ahmad, 2013). 

Performance criteria 

The validation process for each developed model was conducted with the utilization of 

predetermined criteria, specifically the coefficient of determination (R²), mean absolute 

error (MAE), and root mean square error (RMSE). These criteria were defined by the 

following mathematical equations: 

R2=
∑ (Oi-O̅)N

i=1 (Pi-P̅)

√∑ (Oi-O̅)
2N

i=1
√√∑ (Pi-P̅)

2N
i=1

                                                                   (2) 

RMSE=√
∑ (Oi-Pi)

2N
i=1

N
                                                    (3) 

MAE=
|∑ (Oi-Pi)

N
i=1 |

N
   (4) 

Where xO and xP are observed and predicted values, respectively; x̅O and x̅P are the mean 

of the observed and the predicted values, respectively, and N is the total number of 

dataset. The indices mentioned earlier represent average error values of the implemented 

models. In order to address this limitation, a novel statistical metric, termed the developed 

discrepancy ratio (DDR) has been introduced by Noori et al. (2010):  

DDR=
Predicted Value

Observed Value
-1         (5) 

For enhanced evaluation and visualization, it is advantageous to compute the Gaussian 

function of DDR values and depict them in a standard normal distribution format. To 

achieve this, the initial step involves standardizing the DDR values, followed by the 

application of the Gaussian function to obtain the normalized DDR values. The standard 

normal distribution for each model was graphically presented. In the resulting figures, it 

was observed that a stronger inclination of the error distribution graph toward the center 
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line, accompanied by larger values of the maximum when standardizing the DDR values, 

corresponds to a higher degree of accuracy. 

RESULTS AND DISCUSSION 

To anticipate the UWL in individual wells, the data presented in Table 4 were utilized for 

each of the machine learning models introduced in the preceding section. Within this 

table, five input variables encompass the UWL observed one to five days prior, denoted 

by Lag-1 to Lag-5 symbols, respectively. The different input configurations with lag 

times (M1-M5) were used to test the influence of previous UWL observations on current 

predictions. By incorporating lag times from one to five days to capture the temporal 

dependencies and enhance the accuracy of the models by testing various combinations of 

input variables. 

Table 4: The input combination for the MLMs to predict the UWL    

Model number Input Explanation 

M1 WT(t-1) Lag-1 

M2 WT(t-1), WT(t-2) Lag-2 

M3 WT(t-1), WT(t-2), WT(t-3) Lag-3 

M4 WT(t-1), WT(t-2), WT(t-3), WT(t-4) Lag-4 

M5 WT(t-1), WT(t-2), WT(t-3), WT(t-4), WT(t-5) Lag-5 

  

Within this research work, a set of inputs, as delineated by the five models detailed in  

Table 4, for each of the MLMs, was employed for each of the 34 wells. A cumulative 

total of 510 simulations were conducted in the course of this research. A concise summary 

of the outcomes derived from these simulations is presented in Table 5 . The initial column 

in Table 5 enumerates the well identifiers, while the second column delineates the optimal 

input combination for the respective machine learning model. The third column 

indicates the superior MLM. Columns 4 to 7 and 8 to 11, respectively, present the values 

of performance evaluation indicators during the training and testing phases for the two 

steps. The statistical data presented in this table reveals that, in the majority of wells, the 

input configuration denoted as M1 and M2 emerges as the most optimal combination for 

achieving accurate predictions of water levels. Notably, the M5 model did not emerge as 

the preferred combination of input parameters in any of the conducted simulations. Upon 

scrutinizing the numerical values of the performance evaluation indicators, it becomes 

evident that all three MLMs exhibit a notable potential for simulating the UWL. However, 

in comparative analysis, the SVM model consistently emerges with the highest frequency 

of superior models. In order to facilitate a more precise comparison between the observed 

and computed data, contour lines representing the water table during both the training and 

testing phases on the initial and final days are depicted in Figure 3. It is important to 

acknowledge that the choice of these specific days was dictated by the constraints 

associated with the presentation of numerous figures within the article. As discerned from 
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the performance evaluation indicators in Table 5 and Figure 3, a notably strong agreement 

between the measured and computed data is evident. The regulatory parameters of the 

GEP model are delineated in Table 6. 

Table 5: The superior MLMs for wells involved with appropriate inputs 

Well 

No. 
Type of input 

Model 

number 

Training phase Testing phases 

RMSE MAE R2 DDR max RMSE MAE R2 DDR max 

1 M2 SVM  0.26989 0.02317 0.94821 41.94 0.1685 0.1382 0.9250 67.22 

2 M2 SVM 0.42962 0.03790 0.97091 16.97 0.3580 0.3066 0.9752 21.69 

3 M3 SVM 0.42962 0.03790 0.91579 13.19 0.3580 0.3066 0.8864 16.78 

4 M3 GEP 0.31904 0.26342 0.87919 37.66 0.3155 0.2682 0.8929 36.49 

5 M4 GEP 0.41035 0.34320 0.75301 2.41 0.2660 0.1943 0.7744 3.48 

6 M2 MLP 0.25584 0.22012 0.98788 20.34 0.1937 0.1604 0.9951 29.99 

7 M1 SVM 0.25336 0.02231 0.86339 2.94 0.2723 0.2304 0.8215 3.37 

8 M1 MLP 0.23224 0.19893 0.88549 4.71 0.1675 0.1465 0.8762 8.07 

9 M1 GEP 0.41035 0.34320 0.71252 2.63 0.1560 0.1354 0.9692 8.04 

10 M1 SVM 0.15824 0.01383 0.97395 23.72 0.1929 0.1767 0.9511 25.56 

11 M2 SVM 0.35588 0.03006 0.80562 12.40 0.2134 0.1851 0.8309 17.56 

12 M2 SVM 0.23742 0.02001 0.99337 42.09 0.3032 0.2679 0.9580 37.37 

13 M2 SVM 0.19414 0.01666 0.98167 16.72 0.3307 0.2591 0.9848 12.83 

14 M2 MLP 0.23740 0.19493 0.84509 4.64 0.1214 0.1036 0.9452 7.32 

15 M1 SVM 0.29423 0.02465 0.98917 15.59 0.1825 0.1520 0.9842 27.11 

16 M3 MLP 0.23512 0.20128 0.83722 4.68 0.1758 0.1518 0.8528 7.80 

17 M3 GEP 0.24472 0.20467 0.90197 10.23 0.2033 0.1665 0.9291 9.14 

18 M3 SVM 0.29263 0.02640 0.94324 7.32 0.2653 0.2366 0.9400 9.41 

19 M2 GEP 0.25295 0.22232 0.97633 28.70 0.2261 0.1925 0.9694 32.39 

20 M1 GEP 0.28269 0.24073 0.90212 11.43 0.3250 0.2845 0.8312 13.75 

21 M1 MLP 0.35263 0.30353 0.95946 22.86 0.2562 0.2201 0.9826 33.22 

22 M1 SVM 0.22545 0.01926 0.91509 12.36 0.1831 0.1516 0.8919 12.59 

23 M2 SVM 0.26064 0.02244 0.98884 21.17 0.2203 0.1859 0.9935 28.41 

24 M4 SVM 0.26087 0.02297 0.94456 9.19 0.2503 0.2197 0.9034 9.07 

25 M3 SVM 0.29410 0.02476 0.90429 13.67 0.2257 0.1888 0.9102 14.16 

26 M1 MLP 0.24102 0.20151 0.84815 8.77 0.2440 0.2218 0.7249 8.89 

27 M1 GEP 0.42856 0.37122 0.33765 7.55 0.3066 0.2542 0.3708 10.51 

28 M2 GEP 0.28242 0.24037 0.99942 5.86 0.2588 0.2184 0.9981 30.25 

29 M2 MLP 0.35531 0.29557 0.69195 17.32 0.2596 0.2161 0.4980 20.30 

30 M2 GEP 0.23601 0.20440 0.99260 34.76 0.1685 0.1358 0.9427 19.01 

31 M2 SVM 0.24083 0.02120 0.20387 12.68 0.1916 0.1704 0.2969 16.36 

32 M2 SVM 0.21831 0.01904 0.38105 27.40 0.1796 0.1482 0.9914 50.85 

33 M3 SVM 0.17079 0.01519 0.93049 15.52 0.1298 0.1142 0.8302 18.85 

34 M1 SVM 0.23542 0.02050 0.92445 11.06 0.2053 0.1696 0.9466 11.24 
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Table 6: Values of tuned parameters for optimized MLMs 

Well No. 
Tuned parameters of 

SVM 

Well 

No. 

Tuned parameters of 

GEP 
Well No. 

Tuned parameters of 

MLP 

1 (C=150, ε=0.10, γ=10) 4 Population size: 150 

Number of genes: 3 

Gene head length: 9 

Gene tail length: 11 

6 MLP: 2-5-1 

Activation function: Tanh 

2 (C=90, ε=0.10, γ=9) 5 Population size: 180 

Number of genes: 3 

Gene head length: 10 

Gene tail length: 15 

8 MLP: 1-3-1 

Activation function: Tanh 

3 (C=85, ε=0.10, γ=10) 9 Population size: 170 

Number of genes: 3 

Gene head length: 9 

Gene tail length:19 

14 MLP: 2-4-1 

Activation function: 

Sigmoid 

7 (C=200, ε=0.2, γ=10) 17 Population size: 320 

Number of genes: 3 

Gene head length: 15 

Gene tail length:20 

16 MLP: 3-7-1 

Activation function: Tanh 

10 (C=120, ε=0.10, γ=15) 19 Population size: 220 

Number of genes:4 

Gene head length: 15 

Gene tail length: 18 

21 MLP: 1-4-1] 

Activation function: 

Sigmoid 

11 (C=120, ε=0.10, γ=23) 20 Population size:200 

Number of genes: 4 

Gene head length: 20 

Gene tail length: 15 

26 MLP: 1-5-1 

Activation function: 

Sigmoid 

12 (C=150, ε=0.50, γ=6) 27 Population size: 230 

Number of genes: 3 

Gene head length: 15 

Gene tail length:24 

29 MLP: 2-6-1 

Activation function: Tanh 

13 (C=200, ε=0.10, γ=10) 28 Population size: 240 

Number of genes: 4 

Gene head length: 16 

Gene tail length: 35 

 

 

15 (C=150, ε=0.10, γ=2) 30 Population size: 350 

Number of genes: 3 

Gene head length: 21 

Gene tail length: 25 

18 (C=200, ε=0.10, γ=10) Note: 

The following tunes parameters 

are set as fixed values for all 

models 

• Mutation rate: 0.044 

• Inversion rate: 0.1 

• Gene transposition rate: 0.1 

• One point recombination rate: 0.3 

• Two-point recombination rate: 0.3 

• Gene recombination rate: 0.1 

• Fitness function: RMSE 

22 (C=120, ε=0.20, γ=20) 

23 (C=95, ε=0.10, γ=2) 

24 (C=80, ε=0.10, γ=25) 

25 (C=150, ε=0.10, γ=9) 

31 (C=100, ε=0.10, γ=18) 

32 (C=100, ε=0.10, γ=19) 

33 (C=120, ε=0.10, γ=20) 

34 
(C=110, ε=0.20, γ=26) 
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Figure 3: Water level counter line during training and testing phases on the first and 

last day of simulation 

To elaborate further on the simulation process and the selection of the optimal model for 

each observation well, detailed descriptions of three chosen models are provided below, 

based on their performance.  In the context of well number one, the SVM model has been 

selected as the optimal simulator, employing the M2 combination as the designated input 

parameter. The computed values for RMSE, MAE, R2, and DDRmax indices during both 

the training and testing processes were determined as follows: Training Phase 

(RMSE=0.26989, MAE=0.02317, R2=0.94821, DDRmax=46.64); Testing Phase 

(RMSE=0.1685, MAE=0.1382, R2=0.9250, DDRmax=67.22). As established, the 

outcomes of the statistical indicators pertaining to performance evaluation during the test 

period surpass those of the training phase, indicative of the model's accurate training 
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performance. Notably, the tuned parameters for the SVM model in this simulation were 

set to C=150 and γ=2.5. In Fig. 4, the depiction illustrates the distribution of observational 

and computational data in relation to a line with a slope of 1:1 throughout both the training 

and test stages. Notably, the output of the SVM model exhibits a proximity to the 1:1 line 

in contrast to the other three models. The performance evaluation comparison of the three 

models, utilizing the DDR index, is depicted graphically in Fig. 5. As illustrated, the SVM 

model attains the highest value on the vertical axis during both the training and test stages, 

signifying its superiority. Additionally, Fig. 6 presents the degree of concordance between 

observational and calculated data, accompanied by the distribution of residual errors for 

each of the training and test stages. 

  

Figure 4: Scatter plot of SVM outcome for the Well #1  

  

Figure 5: Distribution of DDR index for Well #1 
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Figure 6: Performance of the SVM for well #1  

For well #30, wherein the GEP model with the input combination M2 is identified as the 

superior and optimal model, the computed values for RMSE, MAE, R2, and DDRmax 

indices during the training and validation stages are reported as follows: (0.23601, 0.2044, 

0.9926, 34.76) and (0.1685, 0.1358, 0.9427, 19.01), respectively.  

To visually assess the performance of the GEP model on input data, the interaction 

between observational and computational data is depicted in  Figure 7. Notably, the 

curve's characteristics underscore the GEP model's outputs being in close proximity, 

exhibiting a shorter distance compared to the other two models. Figure 8 provides a 

graphical representation of the DDR index distribution for the three models. Evidently, 

the GEP model attains the highest point on the vertical axis during both the training and 

test periods, affirming its superiority for the well. Additionally, Figure 9 illustrates the 
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concordance between observational and computational data, coupled with the distribution 

of residual errors specifically for the GEP model. 

   

Figure 7: Scatter plot of the GEP outcome for the Well #30 

   

Figure 8: Distribution of DDR index for Well #30 
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Figure 9: Performance of the SVM for well #30 

The performance of the MLP model, identified as the superior model for well #21 based 

on the optimal combination of M1, is illustrated in Figs. 10 to 12. While the values of 

RMSE=0.3526, MAE=0.3035, R2=0.9595, and DDRmax=22.86 shows the precise 

prediction of the MLP model for the training phase, those of the testing stage are 

RMSE=0.2562, MAE=0.2201, R2=0.9826, DDRmax=33.22. In Figure 10, the evident 

proximity of points associated with the MLP model to the 1:1 line, in comparison to the 

two GEP and SVM models, is apparent. This characteristic is discernible in both the 

training and test phases . Figure 11 showcases the discrepancy in the maximum value of 

the DDR index on the axis, clearly emphasizing the superiority of the MLP model 

compared to the other two models. This distinction is noticeable in both training and test 

scenarios. Furthermore, Figure 12 presents the observed data values corresponding to 

each measured data point, alongside the distribution of residual errors for the MLP model . 
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Figure 10: Scatter plot of the GEP outcome for the Well #21 

 

  

Figure 11: Distribution of DDR index for Well #21 
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Figure 12: Performance of the SVM for #21 

CONCLUSION  

Given the paramount significance of subterranean water resources and the strategic 

imperative of their utilization across diverse sectors, precise anticipation of fluctuations 

in UWLs is of utmost importance. In this study, the efficacy of three distinct machine 

learning models namely SVM, GEP, and MLP was harnessed to prognosticate the UWLs 

within the Azarshahr plain of Tabriz, Iran. The analysis leveraged data spanning a three-

year period derived from 34 observation wells. The assessment of model performance 

was executed through the deployment of RMSE, MAE, and DDR indices. The outcomes 

of the simulations revealed that all three models demonstrated commendable predictive 

capabilities regarding UWLs. The simulation results show the superiority of SVM, GEP 
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and MLP models in 53, 26 and 20 percent of the number of wells, respectively. The results 

indicated the M2 input combination (inputs with 2-lag) lead to the highest precise in the 

outcomes. The values of 0.2457, 0.2077, 0.9482, and 31.53 can be expressed as the 

average values of RMSE, MAE, R2 and DDRmax for the SVM model during testing phase. 

One reason could be the effectiveness of the SVM in handling complex, nonlinear data 

patterns due to its ability to map inputs to higher-dimensional spaces using kernel 

functions, making it more adaptable to variations in groundwater levels.Increasing the lag 

time affected predictive accuracy by potentially adding unnecessary complexity to the 

models. While some lag time helps capture temporal dependencies, too much can 

introduce irrelevant past data, leading to overfitting and decreased accuracy. Each model 

exhibited the capacity to simulate outcomes with the desired precision through the 

amalgamation of input parameters. However, among the triad of models, the SVM 

emerged as the most adept in predicting UWLs, thereby earning distinction as the 

preeminent model across a substantial number of wells. The difference in accuracy across 

the models could be attributed to the inherent strengths of each algorithm in handling 

different types of nonlinear relationships, the choice of hyperparameters, and the ability 

of each model to generalize the patterns in the dataset. The complexity of the groundwater 

system and the chosen input configurations also play a role. 

The findings imply that MLMs can serve as effective tools for groundwater management 

in arid and semi-arid regions, offering an alternative to traditional numerical models. 

Accurate UWL predictions allow for better resource planning and management in water-

scarce regions.  

Future studies could explore hybrid models combining the strengths of SVM, GEP, and 

MLP, or optimize the hyperparameters further. Additionally, incorporating more 

advanced machine learning techniques like deep learning or long short-term memory 

(LSTM) networks could enhance prediction accuracy for UWL. 
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