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ABSTRACT 

Effective reservoir operation is critical for managing water resources in the face of rising 

demand and limited supply. This study investigates the use of the Jaya Algorithm (JA), 

Invasive Weed Optimization (IWO) and Particle Swarm Optimization (PSO), to reduce 

irrigation deficits at the Ukai Dam on India's Tapi River. The algorithms were evaluated 

using a 45-year dataset that included irrigation deficiencies, convergence rates, and 

reliability and vulnerability indices. JA consistently outperformed PSO and IWO, 

demonstrating reduced deficiencies, faster convergence, and superior dependability. The 

work offers useful insights for improving reservoir operations in the context of water 

resource management, emphasizing the relevance of algorithm selection in producing 

robust and economical results. 

Keywords: Jaya algorithm, Optimization, Irrigation, Reservoir operation. 

INTRODUCTION 

The increasing demand for water and the scarcity of current water sources, careful 

management, development, and preservation of water resources have become critical in 

the modern day (Tzanakakis et al., 2020). This condition puts a pressure on water supply 

infrastructure, resulting in disputes among diverse water consumers, fierce rivalry, and 

negative environmental consequences due to the mismatch between water demand and 

supply (Martínez-Valderrama et al., 2023, Mehta et al., 2023). Addressing these issues 

needs effective water distribution and management procedures, which is a daunting 
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undertaking for policymakers (Adom and Simatele, 2022). Optimizing present projects is 

one possible method for addressing reservoir operation difficulties (Giuliani et al., 2021). 

Historically, reservoir operation has depended on methodologies such as linear 

programming (LP), non-linear programming (NLP), and dynamic programming (DP) 

(Kumar and Yadav, 2022). While these strategies have proven useful, each has its own 

set of restrictions. Linear programming requires a linear objective function and 

constraints; dynamic programming encounters dimensionality concerns; and non-linear 

programming struggles to solve non-convex issues efficiently (Xu et al., 2022).  

Recognizing these limits, current research has focused on investigating heuristic and 

metaheuristic algorithms as alternatives (Abualigah et al., 2022). Although these 

algorithms do not always provide optimum global solutions, they regularly produce 

outstanding results within realistic calculation durations. This transition to heuristic and 

metaheuristic techniques reflects a larger recognition of the need for inventive and 

adaptive solutions in reservoir operation optimization (Jahandideh‐Tehrani et al., 2021). 

As the demand for water grows and the issues of managing water resources become more 

complicated, the research of various optimization strategies becomes critical (Kumar et 

al., 2023). The combination of evolutionary algorithms, heuristic methods, and 

metaheuristic methodologies provides potential solutions to the complex difficulties 

involving water distribution and reservoir operation (Almubaidin et al., 2022). In the face 

of rising water scarcity and competition, policymakers and water resource managers must 

take into account these emerging techniques in order to establish viable and sustainable 

solutions (Zhang et al., 2020, Umrigar et al., 2023). 

In recent decades, researchers have increasingly focused on evolutionary algorithms as 

helpful methods for handling complex problems, including reservoir operation 

optimization (Kumar and Yadav, 2020a). Notably, scholars have investigated numerous 

evolutionary algorithms to solve the issues of managing water resources. (Reddy and 

Kumar, 2007) used PSO to manage reservoir operations, with the goal of maximizing 

hydropower output and addressing irrigation deficits. In a comparable way, (Kim et al., 

2008) used the genetic algorithm (GA) to develop optimal operating rules for reservoirs 

over the course of a year, with an emphasis on thoroughly investigating the reservoir 

operation problem. The adaptability of evolutionary algorithms was further proved by 

(Raju et al., 2012), who employed Differential Evolution (DE) algorithms to schedule 

irrigation planning within the framework of reservoir operations. 

Hossain and El-Shafie (2014) work demonstrates that the use of evolutionary algorithms 

extends beyond standard methodologies. They investigated the effectiveness of the 

artificial bee colony (ABC) algorithm in improving the discharge strategy of the Aswan 

High Dam. This study demonstrated the applicability of evolutionary algorithms to real-

world problems associated with huge reservoir systems. Ming et al. (2015) conducted a 

comparative research on the use of cuckoo search (CS) to optimized Wujiang's multi-

reservoir scheme. The findings, which included a comparison with GA and PSO, showed 

that CS outperformed these established algorithms for optimizing reservoir operations. 

This demonstrates the ability of evolutionary algorithms, such as CS, to provide superior 

solutions in the complex job of managing multi-resource systems. The wide variety of 

evolutionary algorithms used in these works reflects the continuous search for novel and 
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efficient ways to reservoir operation optimization. As researchers continue to investigate 

and enhance these algorithms, it is becoming clear that evolutionary techniques are 

important tools for tackling the complexity of water resource management and improving 

reservoir operations in the face of rising demands and uncertainties (Maier et al., 2014, 

Nicklow et al., 2010, Reed et al., 2013, Giuliani et al., 2016).  

Existing evolutionary methods used in reservoir operation optimization have limitations, 

particularly due to the wide range of parameters they need. These parameters are divided 

into two categories: general parameters, such as population size and number of iterations, 

which are shared by all evolutionary algorithms and algorithm-specific parameters that 

are unique to each approach (Kumar and Yadav, 2020b). In the case of common 

parameters, fundamental choices such as population size and iteration count have a 

significant impact on the overall performance of evolutionary algorithms. They define a 

basic structure that determines the algorithm's convergence and exploration capabilities. 

The actual problem, however, is properly selecting particular algorithm-specific 

parameters, which can have a major influence on the efficacy of the optimization process  

For example, PSO considers internal characteristics such as social and cognitive 

parameters, as well as inertia weight. The values of these parameters affect how particles 

in the swarm interact and adjust their places (Gad, 2022). Similarly, GA uses 

characteristics such as mutation rates, crossover probabilities, and reproduction 

parameters to influence the exploration and exploitation balance within the genetic 

population (Shang et al., 2020). DE uses the crossover rate and scaling factor as critical 

factors to determine the level of disturbance in the solution space (Mei et al., 2023). The 

ABC algorithm includes characteristics including the number of hired bees, scout bees, 

and observers (Zarzycki and Skubisz, 2022). These settings specify the roles and duties 

of various bee kinds in the search process. The difficulty is to correctly configure these 

parameters to guarantee effective exploration of the solution space. 

It is worth mentioning that other algorithms used in reservoir operations, such as, Bat 

Algorithm, Cuckoo Search and Weed Optimization, each have their own set of 

parameters. The selection and fine-tuning of these factors are crucial for attaining the best 

outcomes in reservoir operation optimization (Chong et al., 2021). The incorrect selection 

of algorithm-specific parameters might result in inferior solutions, slowed convergence, 

or even premature convergence. Researchers and practitioners must carefully adjust these 

parameters based on the unique peculiarities of the situation at hand. As the subject of 

reservoir operation optimization advances, tackling the problems of parameter selection 

and optimization is critical to realizing the full potential of these algorithms in real-world 

applications. 

In this work, the Jaya algorithm (JA) was used to solve the problems related with method-

specific parameters in existing optimization techniques. JA, created by (Rao 2016), is 

distinguished by its relentless pursuit of the best feasible solution while actively avoiding 

failure by staying clear of poor alternatives. Previous studies, such as those by (Rao et al., 

2017) improving current machining methods and (Rao et al., 2018) optimizing plate-fin 

heat exchangers, have shown that JA is effective in increasing effectiveness. Huang et al. 

(2018) used JA to maximize power point tracking problem, demonstrating its capacity to 
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achieve faster convergence and more efficacies. Building on this achievement, (Kumar 

and Yadav, 2018) applied JA to optimized reservoir operations and the results indicated 

superior performance. Kumar and Yadav (2019) presented a modified elitist JA, to 

optimize optimum cropping pattern problems. 

Given JA's notable success in a variety of fields, including machining, heat exchangers, 

power point tracking, multi-reservoir operations, and optimal cropping patterns, the 

current study used JA to solve the complex problem of reservoir operation optimization 

with the specific goal of minimizing irrigation deficits. The fundamental element of the 

problem is the requirement for more water to satisfy irrigation needs and eliminate 

irrigation deficits. To evaluate JA's performance, comparisons were done with different 

optimization techniques, including IWO and PSO. The next part describes the 

methodology and materials used in this work. 

MATERIAL AND METHODS 

Jaya Algorithm (JA) 

The Jaya algorithm is a population-based optimization algorithm introduced by (Venkata 

Rao, 2016). It is inspired by the natural process of individuals improving themselves to 

achieve better outcomes. The algorithm seeks to maximize the objective function by 

iteratively updating the solutions in the search space. The algorithm works as follows: 

a) Initialize Population: Generate an initial population of candidate solutions. 

b) Evaluate Objective Function: Evaluate the objective function for each candidate 

solution in the population. 

c) Update Positions: For each pair of solutions, adjust the position of the solutions 

based on their respective performances. Move towards the better solution and 

away from the worse one. 

d) For updating the position of a solution 𝑿𝒊 toward a better solution 𝑿𝒋 is given by: 

𝑋𝑖(𝑡 + 1) =  𝑋𝑖(𝑡) +  𝑟 ∗ (𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)) (1) 

e) where: 𝑿𝒊(𝒕 + 𝟏) is the updated position of solution 𝑿𝒊(𝒕) at iteration 𝒕 + 𝟏, 

𝑿𝒊(𝒕) is the current position of solution 𝑿𝒊 at iteration 𝒕, 𝑿𝒋(𝒕) is the position of 

the better solution 𝑿𝒋  at iteration 𝒕, 𝒓 is a random number between 0 and 1. 

f) Update Objective Function: Evaluate the objective function for the updated 

positions. 

g) Repeat steps (c)-(d) for a certain number of iterations or until convergence 

criteria are met. 

The algorithm is designed to move each solution toward the better solution in the search 

space, influencing the exploration-exploitation trade-off. 
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Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a population-based optimization algorithm 

inspired by the social behavior of birds flocking or fish schooling. It was originally 

introduced by (Eberhart and Kennedy, 1995). PSO is widely used for solving optimization 

problems, particularly in the domains of engineering, data mining, machine learning, and 

other fields. The algorithm works as follows: 

a) Initialization: Randomly initialize the position and velocity of each particle in 

the search space. Set each particle's personal best position (𝑝𝑏𝑒𝑠𝑡) initially to its 

current position. 

b) Evaluation: Evaluate the fitness of each particle based on its position in the 

search space. 

c) Update Personal Best (𝑝𝑏𝑒𝑠𝑡): If the current position yields a better fitness value 

than the stored 𝑝𝑏𝑒𝑠𝑡, update 𝑝𝑏𝑒𝑠𝑡. 

d) Update Global Best (𝑔𝑏𝑒𝑠𝑡): Identify the particle with the best fitness value in 

the entire population and designate its position as the global best. 

e) Update Velocity and Position: Adjust the velocity and position of each particle 

using the following formulas: 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡 + 1) =  𝑤 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑( ) ∗ (𝑝𝑏𝑒𝑠𝑡 −

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡)) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑( ) ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡)) (2) 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡 + 1) =  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡) + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡 + 1) (3) 

Here, 𝑤 is the inertia weight, 𝑐1 and  𝑐2 are acceleration coefficients, and 𝑟𝑎𝑛𝑑( ) 

generates a random number between 0 and 1. 

f) Repeat steps (b) - (e) until a termination condition is met (e.g., a maximum 

number of iterations or achieving a satisfactory solution). 

Invasive Weed Optimization Algorithm (IWO) 

The Invasive Weed Optimization (IWO) algorithm, proposed by (Mehrabian and Lucas, 

2006), is a nature-inspired optimization technique drawing inspiration from the invasive 

characteristics of weeds in nature. IWO models the process of weeds spreading and 

colonizing an area to iteratively improve potential solutions in a search space. The 

algorithm works as follows: 

a) Initialization: Initialize weed positions randomly in the search space. 

b) Evaluation: Evaluate the fitness of each weed based on its position. 

c) Reproduction (Seed Production): Assign reproductive success probabilities to 

each weed based on fitness. Generate random numbers to determine if a weed 

produces seeds. Create new weeds (seeds) based on the generated probabilities. 
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d) Seed Dispersal (Colonization): Disperse the seeds across the search space, 

emulating the invasive behavior of weeds. The process of seed dispersal in IWO 

can be represented by the formula: 

𝑋𝑛𝑒𝑤 =  𝑋𝑜𝑙𝑑 +  𝑅 ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑜𝑙𝑑) 
(4) 

e) Where,  𝑋𝑛𝑒𝑤 is the new position (seed), 𝑋𝑜𝑙𝑑  is the current position of a weed, 

𝑋𝑏𝑒𝑠𝑡  is the position of the weed with the best fitness, 𝑅 is a random number 

between 0 and 1. 

f) Weed Elimination: Eliminate certain existing weeds based on a criterion (e.g., 

worst fitness) to make room for new seeds. 

g) Repeat: Iterate through steps (b) – (e) until a termination condition is met. 

STUDY AREA DESCRIPTION AND DATA COLLECTION  

The Tapi River is a west-flowing interstate river in India that passes through Maharashtra 

and Madhya Pradesh before finally pouring out of Gujarat. The Ukai Dam, built in 1972 

along the Tapi River at coordinates 21°14'53.52"N and 73°35'21.84"E, has a maximum 

storage capacity of 8480.18 𝑀𝑚3, with a gross storage capacity of 7414.29 𝑀𝑚3. The 

dam, which was primarily constructed for irrigation, power production, and some flood 

control, is critical to the region's water management. Fig. 1 shows an index map of the 

research region. Water is distributed inside the irrigation system via three canal networks. 

The Ukai Left Bank Main Canal (ULBMC) diverts straight from the Ukai Dam, whereas 

the Kakrapar Left Bank Main Canal (KLBMC) and Kakrapar & Ukai Right Bank Main 

Canal (KURBMC) divert from the Kakrapar Weir, which is 29 kilometers downstream. 

The dam discharges water for energy generation, and the downstream city is Surat, which 

has a population of over 6.6 million. 

The Singanpor Weir Cum Causeway, located near Rander in Surat City, was built on the 

Tapi River in 1995. The Ukai Dam guarantees that the minimal downstream discharge is 

sufficient to fulfill Surat City's household, industrial, and water quality requirements. Any 

overflow from the weir empties into the Khambhat Gulf in the Arabian Sea. The Surat 

Irrigation Circle and the Ukai Left Bank Division provided data for this study. The dataset 

contains the following: monthly inflow into the Tapi River (1972–2016), evaporation 

rates (1972–2016), reservoir areas (1972–2016), monthly levels and storage in the Ukai 

Reservoir (1972–2016), monthly discharge from Powerhouse (1976–2016), irrigation 

requirements, channel releases (1976–2016), and requirements for water quality for 

home, industrial, and domestic use. This large dataset is the basis for a thorough 

assessment of the many functions of the Ukai Dam and their impact on the neighboring 

towns. 
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Figure 1: Study area index map  

MATHEMATICAL MODEL FORMULATION 

The aim of this research is to reduce irrigation deficits, as measured by Square Deviations 

of Irrigation Demand and Release (SQDV). The SQDV is defined as the total of squared 

differences between irrigation demands (D) and irrigation releases (IR) for three canals 

during a 12-month period: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑄𝐷𝑉 =  ∑(𝐷 1,𝑡 − 𝐼𝑅 1,𝑡)2

12

𝑡=1

+ ∑(𝐷 2,𝑡 − 𝐼𝑅 2,𝑡)2

12

𝑡=1

+ ∑(𝐷 3,𝑡 − 𝐼𝑅 3,𝑡)2

12

𝑡=1

 

(5) 
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Here, 𝐷 1,𝑡, 𝐷 2,𝑡, and 𝐷 3,𝑡 represent the irrigation demands for ULBMC, KLBMC, and 

KURBMC, respectively, during the time period t, in 𝑀𝑚3. Similarly, 𝐼𝑅 1,𝑡, 𝐼𝑅 2,𝑡 and 

𝐼𝑅 3,𝑡 represent the corresponding irrigation releases. 

The objective is contingent upon the following constraints: 

Continuity constraints 

𝑆𝑇𝑡+1 =  𝑆𝑇𝑡 + 𝐼𝑡 − (𝑅 1,𝑡 + 𝐼𝑅 1,𝑡 + 𝐼𝑅2,𝑡 + 𝐼𝑅3,𝑡) − 𝐸𝑣𝑡 − 𝑂𝑡 (6) 

Where, 𝑆𝑇𝑡+1 is the storage during period 𝑡 + 1 in 𝑀𝑚3. 𝑆𝑇𝑡 is the reservoir storage, 𝐼𝑡 

is the inflow, 𝑅 1,𝑡 is the release to the river bed turbine, 𝐸𝑣𝑡 is the evaporation, 𝑂𝑡 is the 

overflow from the reservoir during period 𝑡 in 𝑀𝑚3. 

Evaporation constraints 

𝐸𝑣𝑡 =
𝐸𝑡

1000
∗

𝐴𝑡 + 𝐴𝑡+1

2
 (7) 

Where, 𝐸𝑡 and 𝐴𝑡 are the reservoir evaporation and area from the reservoir during period 

𝑡 in 𝑀𝑚3 and 106 m2 respectively. 𝐴𝑡+1 is the reservoir areas at t+1 in 106 m2. 

Storage constraints 

𝑆𝑇𝑚𝑖𝑛 ≤  𝑆𝑇𝑡 ≤ 𝑆𝑇 𝑚𝑎𝑥 (8) 

Where, 𝑆𝑇𝑚𝑖𝑛  and 𝑆𝑇𝑚𝑎𝑥  are the minimum and maximum storage capacities, during 

period 𝑡 in 𝑀𝑚3. 

Canal Capacity constraints 

𝐼𝑅 1,𝑡 ≤  𝐶𝐿1,𝑡,𝑚𝑎𝑥 
 (9) 

𝐼𝑅2,𝑡 ≤  𝐶𝐿2,𝑡,𝑚𝑎𝑥 
 

(10) 

𝐼𝑅3,𝑡 ≤  𝐶𝐿3,𝑡,𝑚𝑎𝑥 
 

(11) 

Where, 𝐶𝐿1,𝑡,𝑚𝑎𝑥 
, 𝐶𝐿2,𝑡,𝑚𝑎𝑥 

 and 𝐶𝐿3,𝑡,𝑚𝑎𝑥  
are the maximum canal carrying capacities in 

ULBMC, KLBMC, and KULBMC, respectively in 𝑀𝑚3.   
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Overflow constraints 

𝑂𝑡 ≥  𝑆𝑇𝑡 + 𝐼𝑡 − (𝑅 1,𝑡 + 𝐼𝑅 1,𝑡 + 𝐼𝑅2,𝑡 + 𝐼𝑅3,𝑡) − 𝐸𝑡 − 𝑆𝑇𝑚𝑎𝑥  (12) 

Where, 𝑂𝑡 > 0, 𝑆𝑇𝑚𝑎𝑥  is the maximum storage in 𝑀𝑚3.  

Irrigation demands 

𝐷 1,𝑡,𝑚𝑖𝑛 ≤  𝐼𝑅1,𝑡 ≤ 𝐷1,𝑡,𝑚𝑎𝑥 (13) 

𝐷2,𝑡,𝑚𝑖𝑛 ≤  𝐼𝑅2,𝑡 ≤ 𝐷2,𝑡,𝑚𝑎𝑥 
(14) 

𝐷3,𝑡,𝑚𝑖𝑛 ≤  𝐼𝑅3,𝑡 ≤ 𝐷3,𝑡,𝑚𝑎𝑥 
(15) 

Where, 𝐷1,𝑡,𝑚𝑖𝑛, 𝐷2,𝑡,𝑚𝑖𝑛  and 𝐷 3,𝑡,𝑚𝑖𝑛  are the minimum irrigation demands and 𝐷1,𝑡,𝑚𝑎𝑥, 

𝐷2,𝑡,𝑚𝑎𝑥 and 𝐷3,𝑡,𝑚𝑎𝑥 are the maximum irrigation demands for ULBMC,  KLBMC, and 

KULBMC, respectively, in time period 𝑡. 

Water Quality Requirements 

𝑅 1,𝑡 ≥ 𝐷 𝑚𝑖𝑛,𝑡 (16) 

Where, 𝐷 𝑚𝑖𝑛,𝑡  is the minimum downstream release in the river. 

MODEL EVALUATION 

Statistical efficiency parameters  

Root mean square error (RMSE) 

RMSE is a widely used statistical measure of the accuracy of a predictive model or an 

estimator. It quantifies the average magnitude of the errors between water demand and 

water released. A smaller RMSE indicates better model performance, with 0 representing 

a perfect fit. 

𝑅𝑀𝑆𝐸 =  √
1

𝑡
∑(𝐷𝑖 − 𝑅𝑖)

2

𝑡

𝑖=1

 (17) 

Where, 𝐷𝑖  is the water demand and 𝑅𝑖is the water released, during 𝑡 = 1, 2, … … 12, in 

𝑀𝑚3.  
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Mean absolute error (MAE) 

Mean Absolute Error is another statistical measure of the accuracy of a predictive model 

or estimator. It computes the average difference between the water demand and water 

released. MAE is less sensitive to outliers compared to RMSE, making it suitable for 

scenarios where outliers are a concern. The MAE may vary from 0 to ∞. 

𝑀𝐴𝐸 =  ∑
|𝐷𝑖 − 𝑅𝑖|

𝑡

𝑡

𝑖=1

 (18) 

Nash Sutcliff efficiency (NSE) 

It is described as one minus ration of the sum of the difference square between demand 

and releases water to the demand water variance. The NSE varies from 1 to -∞, here one 

value shows the perfect fit. 

𝑁𝑆𝐸 =  1 −
∑ (𝐷𝑖 − 𝑅𝑖)

2𝑡
𝑖=1

∑ (𝐷𝑖 − �̅�𝑖)
2𝑡

𝑖=1

 (19) 

Where, �̅�𝑖 is the average water demand. 

Performance evaluation indicators 

Reliability index 

The reliability index is a performance evaluation indicator that assesses the ability of a 

system, process, or structure to function without failure or breakdown over time. It is 

often used in engineering, reliability engineering, and risk analysis. This index illustrates 

the correlation between the water released and the water demand, and it is anticipated to 

exhibit a substantial value. 

𝛼𝑣 =  
∑ 𝑅𝑖

𝑡
𝑖=1

∑ 𝐷𝑖
𝑡
𝑖=1

 (20) 

Where, 𝛼𝑣 is the reliability index. 

Vulnerability index 

The vulnerability index is a performance evaluation indicator that measures the 

susceptibility or sensitivity of a system, process, or entity to adverse effects or disruptions. 

This index is associated with the degree of failures occurring in the system, and a lower 

value of this index is preferable.  
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𝜆 =  𝑀𝑎𝑥 (
𝐷𝑖 − 𝑅𝑖

𝐷𝑖

) (21) 

Where, 𝜆 is the vulnerability index. 

RESULTS AND DISCUSSION  

Model Development and Parameters 

In this study, a reservoir operation model was developed to minimize irrigation deficits, 

employing an average monthly inflow dataset spanning 45 years (1972-2016). All 

algorithms were implemented using MATLAB R2014b software. The common control 

parameters, termination criteria 100,000 and a population size of (25, 50, 75, and 100), 

were systematically varied to assess algorithmic efficiency across 10 distinct runs. 

Notably, it was observed that all algorithms exhibited enhanced performance with a 

population size of 75. Specifically, for the PSO algorithm, internal parameters such as the 

cognitive parameter (𝑐1) and social parameter (𝑐2) were set to 1.3 and 2.0, respectively. 

The inertia weight 𝑤(𝑖) was assigned a value of 1. For the IWO algorithm, parameters 

like the minimum and maximum seed numbers 𝑆𝑒𝑒𝑑𝑚𝑖𝑛 and 𝑆𝑒𝑒𝑑𝑚𝑎𝑥  were configured 

as 0 and 3, respectively. The non-linear modulation index (𝑎) was chosen as 2, with initial 

standard deviation (σ𝑖𝑛𝑖𝑡𝑖𝑎𝑙) and final standard deviation (σ𝑓𝑖𝑛𝑎𝑙) set at 0.6 and 0.001, 

respectively. 

To ensure compliance with reservoir storage constraints, a penalty mechanism was 

incorporated. The penalty parameter 𝑔(𝑚) was fixed at 5. The penalty function 𝑝(𝑚,𝑡)(𝑐), 

where 𝑐 denotes the constraint, is defined in Eq. (22) and (23), showcasing the penalty 

features: 

If  𝑓(𝑝(𝑚,𝑡)(𝑐)) == 0, then 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 0 (22) 

Else if 𝑓(𝑝(𝑚,𝑡)(𝑐)) ≠ 0, then 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =

𝑎𝑏𝑠 (𝑓(𝑝(𝑚,𝑡)(𝑐)))
2
 

(23) 

These adjustments and configurations were made to fine-tune the algorithms and account 

for the unique characteristics of the reservoir system, demonstrating a comprehensive 

approach to optimizing reservoir operations while minimizing irrigation deficits. 

Analysis of Irrigation Deficiencies 

The outcomes derived from 10 distinct runs of JA, PSO and IWO in the pursuit of 

minimizing irrigation deficiencies are subject to detailed examination. Across individual 

runs, JA demonstrated a range of deficiencies from 0.01 to 18.10, exhibiting variability 

in its performance. In contrast, PSO displayed a broader spectrum, with deficiencies 

spanning from 1.27 to 259.61, indicating a higher degree of variability. Meanwhile, IWO 
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consistently showcased competitive performance, maintaining irrigation deficiencies 

within the range of 0.14 to 60.52. Examining specific metrics, the "Best" result 

illuminated the algorithm's minimum deficiency achieved in any single run, with JA 

achieving an impressive 0.01. Conversely, the "Worst" result highlighted the algorithm's 

maximum deficiency, revealing PSO's susceptibility with the highest deficiency recorded 

at 259.61. The "Mean" deficiency, providing an average across all runs, revealed JA with 

the lowest at 3.31, followed by IWO at 6.96, and PSO with a substantially higher mean 

deficiency of 123.62. The "Standard Deviation" metric, which gauges the variability of 

results, pointed to JA's consistent performance with a relatively low standard deviation of 

6.12, while PSO exhibited a wider variability with a standard deviation of 117.39. 

JA emerged as a robust and competitive algorithm, consistently achieving low irrigation 

deficiencies. PSO, while showcasing a broader range of performance, demonstrated 

higher variability and mean deficiencies. IWO, on the other hand, presented stable and 

effective performance. The choice of algorithm depends on specific requirements, 

balancing factors such as consistency, performance, and variability.  

 

Table 1: Results for 10 different runs of JA, PSO and IWO for irrigation deficiencies 

Sr No. JA PSO IWO 

1 0.01 217.58 0.74 

2 10.43 217.67 1.60 

3 0.40 18.41 0.19 

4 0.01 20.15 0.21 

5 0.18 259.61 0.14 

6 1.32 257.23 0.89 

7 18.10 217.67 2.35 

8 1.32 18.41 1.60 

9 0.01 1.27 60.52 

10 0.38 8.13 1.37 

Best 0.01 1.27 0.14 

Worst 18.15 259.61 60.52 

Mean 3.31 123.62 6.96 

Standard Deviation 6.12 117.39 18.83 

 

Fig. 2 illustrates the convergence rates of the various algorithms employed in the study. 

The convergence rate is a critical metric that signifies how quickly or efficiently each 

algorithm reaches its optimal or near-optimal solution. The plotted data provides a visual 

representation of the convergence behaviour of JA, PSO and IWO over the course of the 

optimization process. By examining the convergence rates depicted in the figure, one can 

gain insights into the efficiency and effectiveness of each algorithm in reaching the 

desired solution for minimizing irrigation deficiencies. Here JA convergence rates was 

faster as compared PSO and IWO. 
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Figure 2: Convergence rate of the various algorithms 

Statistical efficiency parameters 

Table 2 presents the results of various algorithms based on error indexes, providing a 

comprehensive overview of their performance metrics. The NSE, RMSE, and MAE serve 

as key indicators for assessing the accuracy and reliability of the algorithms in minimizing 

irrigation deficiencies. The NSE values reveal the overall goodness-of-fit, with JA 

achieving a perfect score of 1, indicating an excellent match between observed and 

simulated values. Both PSO and IWO closely follow suit, attaining high NSE values of 

0.99, denoting strong model performance across the algorithms. Moving on to RMSE, 

which quantifies the average magnitude of the model's errors, JA exhibits an impressively 

low value of 0.000429, suggesting minimal deviations between predicted and observed 

values. In comparison, PSO and IWO show higher RMSE values of 0.311 and 0.120, 

respectively, indicating slightly larger errors in their predictions. The MAE values further 

corroborate the accuracy of the algorithms. JA records the smallest MAE at 0.000340, 

signifying minimal absolute errors. PSO and IWO, while displaying slightly higher MAE 

values of 0.348 and 0.178, respectively, still maintain commendable accuracy in 

predicting irrigation deficiencies. Overall, JA particularly stands out with its perfect NSE 

score and exceptionally low RMSE and MAE values, emphasizing its accuracy and 

reliability in reservoir operation optimization. 

Table 2: Results of various algorithms based on error indexes 

Error Indexes JA PSO IWO 

NSE 1 0.99 0.99 

RMSE 0.000429 0.311 0.120 

MAE 0.000340 0.348 0.178 
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Performance evaluation indicators 

Table 3 encapsulates the outcomes with a focus on performance indicators such as the 

Reliability Index and Vulnerability Index. These indices serve as pivotal metrics for 

evaluating the effectiveness and robustness of JA, PSO and IWO in the context of 

reservoir operation optimization. The Reliability Index, expressed as a percentage, gauges 

the dependability and consistency of each algorithm in meeting water release demands. 

JA leads with an exceptional Reliability Index of 99.99%, signifying an almost perfect 

reliability in fulfilling water release requirements. PSO and IWO closely follow suit with 

high Reliability Indices of 99.93% and 99.96%, respectively, underscoring their 

reliability in reservoir operation. Complementing the Reliability Index, the Vulnerability 

Index assesses the intensity of system failures, with lower values indicating a more robust 

and resilient algorithm. JA demonstrates an incredibly low Vulnerability Index of 

0.000675427, suggesting a minimal likelihood of failure in meeting water release 

demands. In comparison, PSO and IWO exhibit higher Vulnerability Indices of 0.361047 

and 0.124685, respectively. Although higher than JA, these values still indicate 

satisfactory robustness in handling reservoir operation challenges. The performance 

indicators reveal that all three algorithms – JA, PSO, and IWO – exhibit high levels of 

reliability in meeting water release demands, with JA showcasing nearly flawless 

performance. Additionally, the algorithms demonstrate varying degrees of system 

robustness, with JA demonstrating an exceptionally low vulnerability to failure. These 

findings collectively contribute to a comprehensive understanding of the algorithms' 

performance in optimizing reservoir operations. 

 

Table 3: Results of different algorithm based on performance indicators 

Performance Index JA PSO IWO 

Reliability index % 99.99 99.93 99.96 

Vulnerability index % 0.000675427 0.361047 0.124685 

CONCLUSION  

In conclusion, this research methodically evaluated how well the Jaya Algorithm 

(JA), Invasive Weed Optimization (IWO), and Particle Swarm Optimization (PSO), 

performed in improving reservoir operations to reduce irrigation deficits. JA constantly 

showed strong performance with low deficiencies and quick convergence. PSO 

demonstrated a broad spectrum of results, indicating flexibility, although with increased 

unpredictability. IWO has always operated in a steady and efficient manner.  JA stood 

out with a perfect Nash Sutcliff efficiency and exceptional reliability, making it suitable 

for minimizing irrigation deficiencies. PSO shown adaptability, whereas IWO 

demonstrated dependability. This study highlights the significance of choosing the right 

algorithm based on particular optimization targets and limitations in the challenging field 

of water resource management, offering insightful information to practitioners and 

decision-makers. 
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This study systematically assessed the performance of Jaya Algorithm (JA), Particle 

Swarm Optimization (PSO), and Invasive Weed Optimization (IWO) in optimizing 

reservoir operations to minimize irrigation deficiencies. JA consistently demonstrated 

robust performance with low deficiencies and fast convergence. PSO exhibited a diverse 

range of outcomes, showcasing adaptability, albeit with higher variability. IWO 

consistently maintained stable and effective performance. JA stood out with a perfect 

Nash Sutcliff efficiency and exceptional reliability, making it suitable for minimizing 

irrigation deficiencies. PSO showed versatility, while IWO presented reliability. This 

study contributes valuable insights for practitioners and decision-makers, underscoring 

the importance of selecting the appropriate algorithm based on specific optimization 

objectives and constraints in the complex domain of water resource management. 
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