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ABSTRACT 

The flumes reported in the specialized literature are mostly designed in a rectangular 

shape, such as the Parshall or the Venturi, which has several drawbacks, in particular low 

accuracy for low flow depths. The section that offers the best accuracy for both low and 

high flow rates is the triangular section on which the measuring device under 

consideration is based.  

The dimensions of the device are well defined based on rigorous geometrical 

considerations, with the exception of the length of the throat, which has been derived 

from an in-depth graphical optimization study. To facilitate the calculations, all the 

dimensions of the device are related to the top width Bo of the approach channel, which 

is a known parameter for a given installation. 

The discharge coefficient relationship Cd is derived using two distinct rational methods: 

one is based on the energy equation, and the other is based on the properties of the kinetic 

factor. 

The experimental tests were carried out on a specially designed installation involving 

eight devices that allowed the collection of 1485 experimental values of Cd. The predicted 

discharge coefficients had excellent agreement with the observations since a maximum 

deviation of only 0.07% was observed. 

Keywords: Flume, Weir, Triangular profile, Discharge, Discharge coefficient, CWTF. 
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INTRODUCTION 

The specialized man-made canals used for flow measurement in open channels are well 

known as flumes. Typical flumes, such as the Parshall and Venturi flumes (Parshall, 1936; 

Henderson, 1966; Bos, 1976; Bos, 1989), are generally made up of a solidary set of three 

successive static parts from upstream to downstream: a converging section, a throat, and 

a diverging section, also known as discharge. This configuration is not fortuitous because 

each of the parts, as it is designed, plays a primordial role in the behavior of the flow and 

in the control of the flow rate. 

The role of the converging section is to restrict the flow that undergoes a significant 

acceleration, passing from a subcritical state upstream to a supercritical state downstream. 

It is worth noting that flumes can also restrict flow and accelerate it, resulting in a 

localized change in the elevation of the bottom. Sometimes, certain flumes are designed 

with both a contraction of the sidewalls and a change in elevation. 

This supercritical state of the flow thus even remains inside the throat, necessarily passing 

through a critical state occurring most often in the inlet section of the throat. Either way, 

this section, often called the “control section”, is located in a specific region of the throat 

that controls flow to produce the stage-to-flow rate relationship. It is thus well understood 

that the creation of a control section is the prerequisite condition for an appropriate 

functioning of the device, i.e., a needful particular state flow that allows the canal to play 

its role as a flowmeter. 

As it is not known where exactly the control section is located inside the throat, it is 

advisable to provide the throat with a sufficient length to allow parallel flow stream lines 

in this section. 

The diverging section has two main roles. The first consists of ensuring the transition 

between the outlet of the throat and the downstream channel walls where the device is 

inserted. The second role, which is the most important role, consists of accommodating a 

hydraulic jump. This is generally caused by local discontinuities in the throat, such as a 

drop or an elevation of its bottom. These local discontinuities not only contribute to the 

formation of the hydraulic jump but also maintain it over a wide range of flow rates. The 

formation of the hydraulic jump, located between the throat and the converging section, 

has the role of raising the downstream water level so that the device operates with 

minimum head losses. This configuration is very sought after in practice when the device 

is used in areas with a slight slope (Achour, 1984). Head losses are experimentally 

estimated to be between approximately 6% and 7% depending on the type of device, 

which is equivalent to a semimodularity limit between 93% and 94%. 

The other important role of the hydraulic jump, when it forms between the throat and the 

converging section, is that its upstream water level is sufficient to cause the effective 

priming of siphons placed along the walls of the channel. These are previously sized to 

provide the flow rate required for irrigation needs (Achour, 1984). 
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The aforementioned stage-to-flow rate relationship, that is, the relationship between the 

upstream water level and the flow rate, is known as the stage-discharge relationship. This 

means that the flow rate Q can be determined in the upstream part of the device by 

operating a single depth reading at a specific point of measurement whose location 

depends on the type of flume. For the Montana flume, the depth measurement location is 

inside the device at a distance that depends on the flume size (United States Department 

of the Interior). In contrast, for the original Parshall flume, the flow depth measurement 

section is located two-thirds the length of the converging section, counted from the throat, 

or, alternatively, one-third the length of the converging section counted from the inlet 

section (Achour, 1984; Carlier, 1998). 

When the control section is located inside the throat, the criticality condition properties 

(Henderson, 1966; Bos, 1976), along with some simplifying assumptions, are exploited 

to analytically derive the stage-discharge relationship. This is the case for all devices 

called "long-throated flumes", such as Palmer-Bowlus or RBC (ASTM D5390-93, 

Clemens et al., 1984); however, contrary to what some literature claims, this is also valid 

for some of the devices referred to as "short-throated flumes", such as the Parshall flume 

(Achour et al., 2003). 

For the aforementioned devices, the theoretical stage-discharge relationship is written 

as𝑄 = 𝐶   𝑊  ℎ  1
𝑛 , where C is a constant, W is the width of the throat, h1 is the measured 

upstream flow depth, and the exponent n is equal to 3/2, which is in full conformity with 

rectangular cross-sections. However, the previous relationship is often corrected by the 

effects of a correction factor that takes into account the simplifying hypotheses. 

Nevertheless, the practical stage-discharge relationship recommended by Parshall is the 

following improved one, written in engineering units as 𝑄 = 372    × 𝑊   × 3.28 𝑥 × ℎ  1
𝑥 , 

where the exponent x depends solely on the throat width W and whose values are 

tabulated; it varies in the range [1.506; 1.609] when W varies in the following 

corresponding range [0.20 m; 2.60 m] (Carlier, 1998). The above stage-discharge 

relationship gives the flow rate Q at 2% to 5%, sometimes even 7%. It is worth noting 

that this accuracy is similar to that induced by most weirs (Vatankhah and Khamisabadi, 

2019). 

The Parshall is not the only device belonging to the class of "short-throated flumes". Its 

citation herein is unavoidable because it is the most popular flume. However, there are 

also other short-throated flumes used in hydraulic engineering practice. One of the most 

coveted is the H-flume, which is not a channel in the proper sense of the term but rather 

a modified weir, despite being classified as a short-throated flume (Gwinn and Parsons, 

1976). The letter H, associated with the name of the device, actually corresponds to the 

eighth letter of the alphabet. The name H-flume is not related to the shape of the device 

as one might suppose, but it is only the eighth device investigated among a long series of 

devices. The designers of this device attempted to combine the acuteness of a narrow-

angle triangular weir with the self-cleaning properties of a flat bottomed flume. The H-

flume is devoid of diverging sections, making the device take up less space. Moreover, it 

can measure a much wider range of flow rates than any other type of channel of the same 
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class. No known study has attempted to infer the stage-discharge relation of the H-flume 

analytically. 

The class of short-throated flumes also includes the USGS Portable Parshall flume, which 

is a modification of the original Parshall. This modification consisted of removing the 

diverging section to make the device lighter and easier to handle (Johnson, 1963; 

Kilpatrick and Schneider, 1983). The device is presized at 3 inches, which corresponds 

to the width of the throat. It is recommended that the device be used under conditions of 

free fall flow at the exit of the throat. The device has not been the subject of any theoretical 

investigation. The stage-discharge relationship has been determined experimentally and 

is written as 𝑄 = 1.142ℎ1
1.58

, where Q is in CFS units and h1 is in feet. The main 

observation is that the exponent 1.58 is not in conformity with rectangular sections and 

does not correspond to any known and established principle of fluid mechanics. The 

exponent should be, without any contest, equal to 3/2. The proposed formula is certainly 

practical; however, it does not conform to the theory of flume rectangular sections. 

Another interesting short-throated flume from a shape perspective is the trapezoidal flume 

characterized by a V-shaped cross-section, which extends for some distance, and a flat 

bottom (Robinson and Chamberlain, 1960; Robinson, 1966). A short diverging 

trapezoidal section ensures the transition between the trapezoidal channel, which is the 

inlet of the device, and the triangular cross-section channel, which is finally followed by 

a diverging trapezoidal cross-section canal corresponding to the discharge. 

In their major study, Ackers and Harrison (1963) gave a full report on development 

carried out on trapezoidal flumes at the hydraulics research station of Wallingford. They 

highlighted foremost that observation meriting particular attention is that the device 

calibration curve can be derived, with satisfactory accuracy, from the boundary layer 

concept involving a drag coefficient. Friction losses within the flume, based on the Darcy-

Weisbach friction factor, were determined as a function of the Reynolds number. 

Additionally, design methods were recommended to determine the flume dimensions for 

a particular situation. 

One of the short-throated flumes that truly caught on during the early 1970s and continues 

to generate interest today, especially in the United States, is the Cutthroat Flume 

(Skogerboe et al., 1972). Its name comes from the fact that it is a throat-devoid flume; 

hence, it is composed solely of a converging and a diverging section. There are two forms 

of the device, namely, the rectangular cutthroat flume and the trapezoidal cutthroat flume 

(Samani, 2017). The flume has the ability to overcome the limitations of Parshall when it 

is used in flat gradient areas exposed to significant head losses. One cannot understate the 

fact that the rectangular cutthroat flume requires no laboratory evaluation when designed 

with a new size. Specialized literature indicates that the Cutthroat Flume was designed to 

provide excellent flow measurement accuracy since it is estimated at  3% provided the 

device functions under free-flow conditions. However, this excellent accuracy is only 

obtained if the ratio of flow depth h1 at the measuring point to the length L of the device 

is in the range [0.10; 0.40]. Outside this range, inaccuracies are observed, which are 

attributed to the increase in the approach flow velocity associated with the resulting 
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disturbances of the free water surface and its rapid changes. For this reason, most 

cutthroat flumes have been designed so that the ratio h1/L is on the order of 1/3, which is 

a value belonging to the recommended aforementioned range. 

The stage-discharge relationship for the cutthroat flume has been expressed as follows: 
𝑄 = 𝐶   ℎ  1

𝑛 , where C is the calculated flume discharge constant varying by flume 

length/throat width/units, and n is the discharge exponent, which depends upon the flume 

size. Notably, the value of the exponent n greatly exceeds the legitimate 3/2 value of the 

rectangular sections. 

The aforementioned devices are the oldest flumes developed during the 1960s; 

nevertheless, despite their age, these are the main flumes used today in many different 

applications, such as irrigation canals and stream gauging. Notably, these devices are 

insufficiently developed from a theoretical point of view. However, this observation can 

also be made in recently developed flumes, which remain all the same promising devices. 

This is the case for SM-Flume (Samani and Magallanez, 2000), which bears the initials 

of its authors, circular flumes (Samani et al., 1991) allowing the measurement of a wide 

range of discharges with great accuracy. For this device, the flow rate is a function of the 

total load to a power of 2.31, a value that is somewhat close to 2.5 corresponding to the 

V-Notch (Bos, 1976; Bos, 1989). Thus, it has been concluded by some authors, in a hasty 

way to say the least, that the circular flume creates an effect similar to that of V-Notch 

(Samani et al., 1991). Among recent devices, it is worth referring to the so-called central 

baffle flume (Kolavani et al., 2019; Bijankhan and Ferro, 2019; Aniruddha et al., 2020). 

In 2016, Ferro proposed a theoretical stage-discharge relationship for a central baffle 

flume using dimensional analysis. This relationship has been calibrated based on 

Peruginelli and Bonacci’s experimental results (Perruginelli and Bonacci, 1997). 

Additionally, the effect of different geometrical parameters of a central baffle flume was 

experimentally observed by Kolavani et al. (2019), Bijankhan and Ferro (2019), and 

Aniruddha et al. (2020). 

The above listed devices are, for the most part, made up of a rectangular section for which 

an acceptable accuracy is obtained only for high flow rates. The triangular section offers 

excellent accuracy for both low and high flows, as shown by authors in the recent past 

(Achour and Amara, 2022) while considering a triangular broad-crested weir as a 

measurement device. 

Therefore, the present research examines the possibility of exploiting the performances 

of the triangular section in the flow measurement using a new type of flume. The principle 

adopted consists of designing a triangular section flowmeter, with a variable vertex angle 

depending on the length, ensuring a lateral contraction of the sidewalls. This is the 

converging section of the device to which a throat is added. Inevitably, the walls of the 

device are curved; hence, the name "Curved Wall Triangular Flume" is abbreviated as 

CWTF. 
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What is expected at first is to define the dimensions of the device using exclusively 

indisputable geometrical considerations. To provide the designer with dimensionless 

practical relationships, the dimensions of the device are related to the top width of the 

approach channel, which is a given parameter for a given installation. 

In a second step, we plan to derive the stage-discharge relationship, hence that of the 

discharge coefficient, by theoretical considerations based on simple principles of fluid 

mechanics. These theoretical relationships will be validated or refined through an intense 

experimental program involving eight devices with different geometries tested in an 

appropriate installation. 

MATERIAL AND METHODS 

Description of the device and the resulting flow 

Fig. 1 shows a plan view of the device emplaced in an approach channel of trapezoidal 

cross-section of bottom width bo and top width Bo, for which flow rate measurement is 

needed. As the channel is an already built structure, all its geometrical parameters are 

known. These parameters are indicated by an "o" subscript, such as the height ho or the 

side slopes mo horizontal to 1 vertical, as shown in Fig. 2, representing the half diagram 

in accordance with section M-M shown in Fig. 1. 

In Fig. 1, the device has been deliberately designated by the letters "DEVICE'". It is thus 

composed of two static parts, namely, the converging sections "DECE'" and the throat 

"EVIC". All cross sections of the device are triangular. In the converging sections, the 

apex angle decreases from  to  (Fig. 2), resulting in curved walls DEGF and E’CGF. 

The inlet top width B of the device is represented by DE’, and the outlet top width b is 

designated by EC, which is also the top width of the throat. Thus, as in most existing 

flumes, the CWTF is based on the contraction of its sidewalls. 

The throat is a short channel of triangular cross-section with a constant opening angle  

along its entire length EV (Fig. 1). As a rule, the length of the throat is determined based 

on existing assistive devices, preliminarily calibrated devices, or experimental 

observations. However, the throat must be long enough to cause parallel flow lines in the 

control section, which will properly assume its role as the specific flow control region 

producing the stage-discharge relationship. 

The device is devoid of the diverging section, known as discharge sections, which is 

reminiscent of the modified Parshall flume, well-known as the USGS portable flume [6], 

but with triangular cross sections. With the deletion of the discharge sections, the device 

requires free-spilling flow off the end, i.e., in section V-I (Fig. 1). 

As shown in Fig. 1, the apparatus is generated by two circles (C1) and (C2) of radii R1 

and R2, respectively, both tangent to each other at point D and at points E and S to the 

horizontal line passing through points V and E belonging to the crest of the throat. The 
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straight line, which passes along the upper crest of the wall of the trapezoidal channel, is 

tangent to the circle (C2) at point P. It is easy to show that the horizontal distance ES (Fig. 

1) is equal to 212 RR . 

For a given installation, regardless of the contraction rate = b/B and angle, Fig. 1 allows 

us to geometrically write the following: 

oBB
)cos1(5.01

)cos1(5.01





−−

−−
=    (1) 

In other words, for a given installation, one may write rightly what follows: 

oBB =
  (2) 

where  is a constant, less than unity, solely depending on the geometrical characteristics 

of the given installation as follows: 

)cos1(5.01

)cos1(5.01






−−

−−
=    (3) 

For a chosen angle,  is solely dependent on the contraction rate  of the device 

according to Eq. (3). Choosing the appropriate angle  is momentous in ensuring a smooth 

transition between the device and the approach channel providing flow without any 

disturbance. In Figs. 1 and 2, the transition, providing the connection between the 

approach channel and the inlet section of the device, is represented by the arc PD 

belonging to circle (C2). Typically, the design of the transition between channels and 

flumes is somewhat complicated since it is based on the principles of energy and 

momentum conservation (Chow, 1959). In the current case, it will be well defined by 

geometrical considerations, which is the easiest method since the transition is defined by 

an arc of a circle (Figs. 1, 3) whose appropriate central angle  will be selected, according 

to the recommendation of the literature and the authors’ observations. 

Table 1 gives the values of  according to Eq. (3), for some angles  and contraction 

rates. For a given value of,  increases with increasing angle, meaning that B 

approaches Bo. In other words, the length of the arc PD ensuring the transition between 

the device and the approach channel decreases accordingly (Fig. 1). The particular 

configuration of the device corresponds to the case where the length of the arc PD is 

deleted, meaning that the contraction rate of the device is o = b/Bo. 
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Table 1: Values of  according to Eq. (3) 

 
 = 20°  = 25°  = 30°  = 45° 

    

0.10 0.9727796 0.95764006 0.93930485 0.86623917 

0.15 0.97425291 0.95989902 0.94248286 0.87272452 

0.20 0.97573069 0.96216866 0.94568244 0.87930772 

0.25 0.97721295 0.96444906 0.94890383 0.88599098 

0.30 0.97869973 0.9667403 0.95214723 0.89277662 

0.35 0.98019104 0.96904245 0.95541289 0.899667 

0.40 0.9816869 0.97135558 0.95870102 0.90666457 

0.45 0.98318734 0.97367979 0.96201186 0.91377185 

0.50 0.98469236 0.97601515 0.96534565 0.92099143 

0.55 0.98620201 0.97836173 0.96870263 0.928326 

0.60 0.98771628 0.98071963 0.97208303 0.93577833 

0.70 0.99075883 0.98546969 0.97891512 0.9510478 

0.80 0.99382019 0.99026598 0.98584392 0.96682385 

 

From a geometrical point of view, Fig. 2 allows us to write the following: 

oh

B
m

2
)2/(tan 1 ==           (4) 

Hence, 














= −

oh

B

2
tan2 1             (5) 

For the device configuration corresponding to B = Bo, the angle  is then maximal, and 

Eq. (5) becomes the following: 














= −

o

o

h

B

2
tan2 1

max             (6) 

Eq. (6) allows a fast calculation of the maximal opening angle of the inlet section of the 

device, provided the top width Bo and the height ho of the device are given, which is the 

case in practice. Before choosing the appropriate angle for the inlet section of the device, 

it is useful to calculate the maximum angle not to exceed, according to Eq. (6). 
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Similarly, Fig. 2 allows us to geometrically write the following: 

oh

b
m

2
)2/(tan 2 ==  

          (7) 

Hence, 














= −

oh

b

2
tan2 1            (8) 

Additionally, the ratio of Eq. (7) to Eq. (4) results in the following: 

==
B

b

m

m

1

2
            (9) 

 

Figure 1: Plan view of the device represented by “DEVICE’” inserted into a 

trapezoidal approach channel of top width Bo and base width bo 
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Figure 2: View of section M-M according to Fig. 1 

Fig. 3 shows details of the generating circle (C2) of center O2, adopting the same notations 

as those of Fig. 1. The parameters of the circle (C2) will be useful for drawing the second 

generator circle (C1) with center O1tangent at both points E and D. 

 
Figure 3: Geometric parameters of the generating circle (C2) according to Fig. 1, 

including notations 

 /2

 /2

F

h o

b /2
B /2

b o /2

B o /2

E ' CP '

m o

1
m 1

1
m 2

1

Support element

w

O1

R 2 (C2)

P

S

O2

D

y

x

y D

x D

T

2R 2

P '
y P '

E

R 1

R 1

U

212 RR

W



g



Curved wall triangular flume (CWTF) design, theory, and experiment  

149 

With the help of Fig. 1, the following relationships can be derived from geometrical 

considerations: 

)(
4

1
2 bBR o −=           (10) 

Considering Eq. (2), Eq. (10) can be rewritten as follows: 

)(
4

1 1
2  −= −BR           (11) 

Dividing both sides of Eq. (11) by Bo and considering Eq. (2) results in the following: 

)(
4

1 12  −= −

oB

R
        (12) 

Eq. (12) is reduced to the following: 

)1(
4

12 −=
oB

R
        (13) 

Given Eq. (2), Eq. (3) indicates that the ratio R2/Bo only depends on the contraction rate 

 of the device for a given angle. Typically, the contraction rate  of the device and the 

angle  are chosen, which allows a forthwith calculation of the radius R2 according to Eq. 

(13) since the top with Bo of the approach channel is given data. Once the radius R2 has 

been determined, its graphical representation at a chosen scale is easy. 

Additionally, it is required to place point D on circle (C2), represented in Figs. (1) and 

(3), by adopting the following precise coordinates: 

cos2RyD =         (14) 

Considering the top width Bo as a reference length, Eq. (14) is then rewritten as follows: 

cos2

oo

D

B

R

B

y
=         (15) 

Considering Eq. (13), Eq. (15) reduces to the following: 

 cos)1(
4

1
−=

o

D

B

y
          (16) 

Similarly, one may write the following: 

sin2RxD =           (17) 
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Eq. (17) can be rewritten as follows: 

sin2

oo

D

B

R

B

x
=          (18) 

Eliminating the ratio R2/Bo between Eqs. (13) and (18) yields the following: 

 sin)1(
4

1
−=

o

D

B

x
          (19) 

For a given or projected installation, for which angle  has been chosen, the coordinates 

Dy and Dx can be determined using Eqs. (16) and (19), respectively, since both  and 

Bo are provided data. 

Considering Fig. 2, the top width Bo of the trapezoidal approach channel is as follows: 

oooo hmbB 2+=           (20) 

where: 

wcot=om          (21) 

The vertical distance 'PP is such that: 

DyRy −== 2'P'PP                 

        (22) 

One may rewrite Eq. (21) as follows: 

o

D

oo B

y

B

R

B
−= 2'PP

         (23) 

With the help of Eqs. (13) and (16), Eq. (23) reduces to the following: 

)cos1()1(
4

1'PP
 −−=

oB
        (24) 

Additionally, one may observe in Fig. 3 that the triangle DPO2 is isosceles, allowing us 

to write the following: 

2

-
PDODPO 22


==         (25) 
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Hence, the angle g is expressed as follows: 

22


g

−
−=          (26) 

That is, 

2


g =           (27) 

With Eqs. (19), (24), and (27), the geometry of the transition between the approach 

channel and the flume is well defined provided, , and Bo are given; this is the arc of a 

circle PD (Fig. 1, 2), which is written as follows: 

2PD R=         (28) 

where the angle  is expressed in radians. 

Eq. (28) can be rewritten as follows: 


oo B

R

B

2PD
=


         (29) 

Inserting Eq. (13) into Eq. (29) results in the following: 

 )1(
4

1PD
−=



oB
          (30) 

Considering the triangle O1WU, one may write the following: 
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1 2
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−
==


         (31) 

Calculations show that Eq. (31) is a second-degree equation that is written as follows: 

0
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Among the two solutions of Eq. (32), one must retain the one that satisfies the inequality 

R1  R2. Hence, the sought solution is: 
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Eq. (33) shows that the ratio R1/R2 is a constant for a given angle. Eq. (33) can be 

rewritten as follows: 
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Eliminating the ratio R2/Bo between Eqs. (13) and (34) results in the following: 
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Since, Bo, and  are given, Eq. (35) explicitly gives the value of radius R1, allowing us 

to draw circle (C1), as shown in Fig. 1. 

According to Fig. 3, the length ET  of the device’s converging sections, which are also 

shown in Fig. 1, is expressed as follows: 

DxRR −= 212ET           (36) 

Eq. (36) can be rewritten as follows: 

o

D
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x
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21
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With the help of Eqs. (13), (19), and (35), Eq. (36) reduces to the following: 
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Eq. (38) allows a fast and exact calculation of the appropriate length of the device’s 

converging sections, provided , Bo, and  are given. 

Regarding the top width b of the throat, Eq. (1) can be rewritten as follows: 


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B o
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         (39) 
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After rearrangement, Eq. (39) reduces to the following: 

)cos1(5.01

)cos1(5.01






−−

−−
=

oB

b
   (40) 

That is, 

=
oB

b
   (41) 

Furthermore, consider the orthogonal axis system EO1ET (Fig. 1), where EO1 is the Y-

axis and ET is the X-axis. In this system, the vertical distance d (Fig. 1) varies from d = 

0 at x = 0 (Point E) to d = TD at x = ET . Additionally, the top width )(x of the 

converging sections (Fig. 1), which varies from b to B in the direction of the X-axis, can 

be written as follows: 

dbx 2)( +=    (42) 

Considering the point K(x, d) belonging to the circle (C1) (Fig. 1), one may write the 

following equation: 

2
1

2
1

2 )( RdRx =−+     (43) 

After some arrangements, Eq. (43) reduces to the following: 
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Combining Eqs. (41), (42) and (44) results in the following nondimensional relationship: 
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   (45) 

Eq. (45) is very useful since it allows calculating the top width of the converging sections 

of the device at any point of abscissa x belonging to the arc of circle DE  and whose 

value will be chosen by the designer over the entire distance ET (Fig. 1). The ratio R1/Bo 

is easily computed according to Eq. (35) since the contraction rate  and the angle  are 

given. 

The aforementioned relationships, derived from geometrical considerations, give the 

linear dimensions of the device’s converging sections with precision, including the apex 

angles of the inlet and the outlet sections, provided some parameters are given, most 
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notably the angle. Additionally, all the required geometrical characteristics of the device 

are related to the top width Bo of the approach channel, the value of which is known for a 

given installation. 

As has already been indicated, to ensure a regular flow without any disturbance or 

detachment from walls, the choice of the angle should not be made at random. Several 

geometrical representations plotted at various scales show that the optimum value of the 

angle  is 45°. According to the authors’ experimental observations,  = 45° also ensures 

a smooth transition between the inlet section of the device and the approach channel 

through the arc PD of the circle (C2), as shown in Figs. 1 and 3. Moreover, with  = 45°, 

it was observed that the arc length PD is short enough to rightly neglect, on the one hand, 

linear head losses and, on the other hand, minor head losses due to the relatively low 

values of the  = B/Bo contraction rate, as highlighted in Table 1. 

For the purposes of the tests, the various scale models involved will be built on the basis 

of  = 45° after choosing a value of the contraction rate. Thus, the required linear 

dimensions will be obtained by introducing the values of these two parameters into the 

previously established theoretical relationships. Details of the geometry of the CWTFs 

involved in the experimental tests will be disclosed in the appropriate section of the paper. 

With regard to the behavior of the resulting flow, as a restricting structure, the device 

accelerates flow through the converging sections DECE’, shown in Fig. 1, from the slow 

subcritical state in the inlet to the supercritical state in the throat “EVIC”, creating a 

critical state flow between them expected to be in section EC or in a section located only 

slightly further downstream inside the throat. Due to its converging sections, the flow 

depth decreases inside the CWTF from depth h1 to critical depth h2,c, as shown in Fig. 4. 

 

Figure 4: Longitudinal flow profile inside the device. Notations according to Fig. 1 
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The control section located at section 2-2 appears despite the device having no change in 

bottom elevation. This is the sine qua non condition of the correct functioning of the 

device under consideration, thus developing a unique relationship between the upstream 

water level and the flow rate Q. This means, from a mathematical point of view, that the 

discharge is a single-valued function of the upstream flow depth h1, which is read in the 

inlet section of the device, i.e., section DE’ shown in Fig. 1 corresponding to section DF 

of Fig. 3. 

The throat must be long enough to cause parallel flow lines in the control section, which 

will properly assume its role as the specific flow control region producing the stage-

discharge relationship. 

Dimensional analysis and discharge coefficient dependency 

To derive the functional relationship relating the discharge coefficient Cd of the device to 

the physical parameters involved in the resulting flow, dimensional analysis is the most 

appropriate method. The discharge coefficient Cd is the ratio of the actual flow rate to the 

theoretical flow rate. Thus, the discharge coefficient can be thought of as a correction 

factor of the flow rate and hence a correction factor of flow meter devices. It is commonly 

derived from laboratory tests for each device; however, for some flow measurement 

devices, the theory was able to derive the Cd governing relationship, which is solely 

dependent on the geometrical characteristics of the device. Thus, to find the sought 

functional Cd relationship using dimensional analysis, it is first required to identify all the 

parameters that affect the flow rate Q passing through the device under consideration. 

These are manifestly the flow depth h1 at the inlet of the device (Fig. 4), the apex angle  

of the inlet triangular cross section DE’ of the device (Figs. 1, 2), the apex angle  of the 

outlet triangular cross section EC of the device (Figs. 1, 2), the length L = ET = GF of the 

device’s converging sections (Figs. 1, 3), the acceleration g due to gravity, the density ρ 

of the flowing liquid, the dynamic viscosity μ of the flowing liquid, and the surface 

tension  . 

The nine aforementioned parameters can be related to each other by the following 

functional relationship: 

( ) 0,,,,,,,, 1 = LhgQf     (46) 

Using the Vashy-Buckingham  theorem (Langhaar, 1962), one may derive the following 

new functional relationship encompassing the involved dimensionless variables: 
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Hence, it is easy to recognize the Reynolds number Re and the Weber number W as being 

the second and third terms between the brackets of the functional relationship (47), 

respectively. Thus, Eq. (47) reduces to: 


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
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





=  ,,,,

1

2/5
1

2/1 L

h
WR

hg

Q
e    (48) 

However, choosing the top width B of the inlet section of the device as a reference linear 

dimension influencing the discharge Q for a given installation, the ratio h1/L can be 

written as follows: 

BL

Bh

L

h

/

/11
=    (49) 

Considering Eq. (2), Eq. (49) becomes the following: 

o

o

BL

Bh

L

h

/

/11
=     (50) 

The influence of the L/Bo ratio on the discharge is nonexistent since it is a constant for a 

device of a given size. Flow rates Q passing through this device are in no way affected. 

Additionally, the angles  and  are related to the side slopes m1 and m2 according to Eqs. 

(4) and (7), respectively. Moreover, the ratio m2/m1 was determined to be the contraction 

rate  of the device in accordance with Eq. (9). The flow through the device is in the 

turbulent state, and the Reynolds number Re can then be neglected. Surface tension effects 

represented by the Weber number W are only prominent at very low flow rates and very 

narrow opening angles  and ; these effects are negligible given the practical hydraulic 

conditions considered in the current study. 

Thus, considering the relevant previous considerations, Eq. (48) is reduced to: 
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Eq. (51) is in the form of the well-known discharge relationship governing weirs, allowing 

us to derive the discharge coefficient Cd as follows: 


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





=  ,

1

o
d

B

h
C     (52) 

It can thus be observed, as in the case of all devices based on the lateral contraction of 

their sidewalls, the dependency of the discharge coefficient Cd on the contraction rate, 

which is expected to be strong. In one of the appropriate sections of the paper, the theory 
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will confirm this dependence. However, the theory will not be able to show the influence 

of the relative depth h1/Bo on the discharge coefficient Cd. For this, only the analysis of 

the experimental data can confirm or invalidate this influence and for which range of. 

Theoretical discharge and discharge coefficient relationships 

Use of the energy equation 

Given the triangular shape, the critical depth h1,c in inlet section 1-1 of the device (Fig. 4) 

can be written as follows: 

5/1
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2

,1
2









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


=

mg

Q
h c   (53) 

where the subscript “c” denotes the critical condition. 

Similarly, the critical depth h2,c in triangular section 2-2 (Fig. 4) is written as follows: 
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The ratio of Eq. (53) to Eq. (54) results in the following relationship after performing 

some simplifications: 
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Considering Eq. (9) and rearranging Eq. (55) reduces to the following: 

5/2
,2,1 cc hh =   (56) 

Additionally, neglecting the head loss between the inlet 1-1 and outlet 2-2 sections of the 

device, one may write the following: 

chHH ,221
4

5
==    (57) 

where H1 and H2 are the total heads in triangular sections 1-1 and 2-2, respectively. Thus, 

we can deduce the following: 

1,2
5

4
Hh c =   (58) 
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Inserting Eq. (58) into Eq. (56) yields the following: 

5/2
1,1

5

4
Hh c =   (59) 

Let us define the following dimensionless parameter, representing the relative total head 

in section 1-1 (Fig. 4): 

ch

H
H

,1

1*
1 =   (60) 

Thus, Eq. (59) is reduced to the following: 

5/2*
1

4

5 −= H         (61) 

For a given constructed device, characterized by a well-defined contraction rate, Eq. 

(61) shows that the dimensionless parameter H1
* is constant regardless of the flow rate Q 

or the flow depth h1. This is an intrinsic feature of the device that could be attributed to 

its particular shape. 

Additionally, considering the effect of the approach flow velocity, the total head H1 in 

inlet section 1-1 of the device (Fig. 4) is written as follows: 

2
1

2

11
2 Ag

Q
hH +=   (62) 

where A1 is the water area of triangular section 1-1, which is expressed as follows: 

2
111 hmA =     (63) 

Inserting Eq. (63) into Eq. (62) results in the following: 

4
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2 hmg

Q
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Combining Eqs. (53), (12), and (64), the following final result is derived: 
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1

*
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*
1

4

1

h
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where the relative initial flow depth h1
* is defined as: 
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c
h

h
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Inserting Eq. (61) into Eq. (65) results in the following: 
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After rearrangement, Eq. (67) is reduced to the following fifth-degree equation: 

0
4

1

4

5 4*
1

5/25*
1 =+− − hh      (68) 

Eq. (68) is implicit in h1
*, whose value is well defined for a known contraction rate. For 

the case of H1
*, the initial relative depth h1

* is a constant for a designed device 

characterized by a given contraction rate, regardless of the flow rate Q or the flow depth 

h1. Additionally, among the solutions of Eq. (68), the only appropriate one to retain should 

meet the requirement h1
* > 1 since the flow in section 1-1 is subcritical corresponding to 

h1 > h1,c. 

Based on an iterative process applied to the implicit Eq. (68), Table 2 gives exact values 

of h1
*as a function of varying in the wide range [0.15; 0.80]. As seen, h1

* decreases as  

increases, and their variation is shown in Fig. 5, in accordance with the values reported 

in Table 2. 

Table 2: Values of the relative initial depth h1
* as a function of the contraction rate 

, according to Eq. (68) 

 h1
* 

0.15 2.66481027 

0.20 2.37166562 

0.25 2.16499724 

0.30 2.00792598 

0.35 1.88240587 

0.40 1.77838057 

0.45 1.68971437 

0.50 1.6123977 

0.55 1.54365857 

0.60 1.48148031 

0.65 1.42431687 

0.70 1.37090674 

0.75 1.32013003 

0.80 1.27086296 
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Figure 5: Variation in the relative initial depth h1
*as a function of the contraction 

rate, according to values reported in Table 1 

As will be seen later, the relative depth h1
* plays a determining role in the calculation of 

the sought discharge coefficient Cd of the device. Thus, its value must be as accurate as 

possible to minimize the relative error in the Cd calculation. 

The exact value of h1
* can be determined by an iterative process applied to Eq. (68), 

carried out with a machine such as modern pocket calculators in which a powerful solver 

is incorporated. The iterative calculation can also be performed successfully using the 

Excel solver. The best way of speeding up the convergence of the iteration would be to 

introduce an appropriate initial value h1,0
*, as close as possible to the exact value, into the 

calculation process. Intense calculations showed that the best value of h1,0
* could be 

obtained by the Hoerl model, which is often used for curve fitting purposes (Kolb, 1983). 

Thus, according to this model, the following improved h1,0
*() explicit relationship was 

derived: 

( ) 337.0*
0,1 772.0454.1 −= h   (69) 

Within the wide range 0.15    0.80, the maximum deviation between the approximate 

Eq. (69) and the exact Eq. (68) is less than 0.53%. Additionally, if the designer prefers 

using the handy approximate Eq. (69) to avoid the constraining iterative process required 

in solving the implicit Eq. (68), then, a maximum relative error of less than 1.33% will 

be committed in the calculation of discharge coefficient Cd, and hence on the flow rate Q. 

In practice, this relative maximal error is quite acceptable, and therefore, the use of the 

approximate Eq. (69) can be envisioned with great confidence in the range of validity 

0.15    0.80. 

The discharge Q is expressed by Eq. (53) as follows: 
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Considering both Eqs. (9) and (66), Eq. (70) reduces to the following: 

𝑄 =
1

2
𝛽−1ℎ1

∗−5/2
√2𝑔𝑚2ℎ1

5/2
  (71) 

Eq. (71) is in the form of the stage-discharge relationship governing semimodular 

triangular shaped flow meters and weirs used for open channel flow measurement, 

allowing us to derive the sought discharge coefficient Cd of the considered device as 

follows: 

2/5*
1

1

2

1 −−= hCd    (72) 

Considering Eq. (68), Eq. (72) shows that the discharge coefficient Cd of the device is 

solely dependent on the contraction rate. Eq. (72) gives no indication of a possible 

influence of the upstream relative depth on the discharge coefficient. 

Additionally, considering Eq. (69), one may derive the following explicit approximate 

discharge coefficient relationship: 

( )2/5157.0 77.0196.0  −−=dC   (73) 

The maximum deviation between approximate Eq. (73) and Eq. (72), involving exact 

values of h1
* according to Eq. (68), is only 1.266% 

Table 3 groups together the calculated discharge coefficients for some contraction rates 

according to Eq. (72) along with Eq. (68); this allowed plotting Fig. 6 showing the 

variation in Cd as a function of. 

Table 3: Values of the discharge coefficient Cd of the device for some given 

contraction rates  according to Eq. (72) along with Eq. (68) 

 Cd 

0.15 0.28754976 

0.20 0.28860667 

0.25 0.28999241 

0.30 0.29172893 

0.35 0.29384533 

0.40 0.29637956 

0.45 0.29938101 

0.50 0.30291416 

0.55 0.30706421 

0.60 0.31194573 

0.65 0.31771674 

0.70 0.32460274 

0.75 0.33294076 

0.80 0.34326791 
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Figure 6: Variation in the discharge coefficient Cd with the contraction rate  of the 

device according to Table 3 

The discharge coefficient Cd of the device increases with increasing contraction rate, 

which is fully justified from a physical point of view. For a given value of the top width 

B of the inlet section of the device, the contraction rate  increases when the top width b 

of the outlet section of the device increases; this helps to improve the conveying of the 

flow through the throat resulting from a greater discharge coefficient. 

Use of the kinetic factor 

In this section, we put forward an approach that is as rigorous and reliable as the first, 

intending to derive the theoretical stage-discharge relationship and hence that governing 

the discharge coefficient of the device. The effect of the approach flow velocity is 

carefully included in this method. 

The velocity head in section 1-1 (Fig. 4) is deliberately written as a fraction  of the flow 

depth h1 in terms of the mean velocity V1. Thus, considering the Coriolis coefficient equal 

to unity, one may write the following: 

1
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2
h

g

V
=   (74) 

This results in writing the initial total head H1 as follows: 
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h
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V
hH +=+=   (75) 

The dimensionless parameter  can be deservedly considered a kinetic factor. It varies 

between 0 and 1 while remaining strictly less than 1 due to the subcritical nature of the 

flow in section 1-1. When the total head H1 merges with the flow depth h1, the kinetic 

factor  → 0 in full accordance with Eq. (75). 

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

C d





Curved wall triangular flume (CWTF) design, theory, and experiment  

163 

Considering the continuity equation V1 = Q/A1, where A1 = m1h1
2 in the water area in 

section 1-1 (Fig. 4), Eq. (74) allows us to write the kinetic factor  as follows: 

5
1

2
1

2

2 hmg

Q
=   (76) 

Combining Eqs. (53), (59), and (75) results in the following: 

( ) 5
1

522
1

5
2 1

5

4

2

1
hmgQ  +








=     (77) 

Inserting Eq. (77) into Eq. (75) and simplifying yields the following: 

( ) 52
5

1
5

4

4

1
 +








=   (78) 

Hence, 

( ) 2
55

4

5
4

1 −








=

+





  (79) 

Eq. (79) reveals that the kinetic factor  depends solely on the contraction rate, which is 

then the approach flow velocity control parameter. 

Let us denote Co as the following constant: 

5

4

5
4 








=oC    (80) 

Thus, Eq. (79) is rewritten as follows: 

( ) 2
5

1 −=
+





oC   (81) 

Eq. (81) is an implicit relationship in. 

Additionally, when considering Eq. (9), Eq. (77) can be rewritten as follows: 

( ) 2/5
12

2/5
21

1
hmg

C
Q

o

+=   (82) 

Eq. (82) is the stage-discharge relationship of the device in which the discharge 

coefficient Cd is expressed as follows: 
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( ) 2/5
1

1
+=

o
d

C
C   (83) 

Eq. (83) shows that if the approach flow velocity were to be neglected, i.e.,  → 0, then 

the discharge coefficient of the device would be constant, such as

286.0/1 = od CC , regardless of the contraction rate value. However, this 

configuration does not represent realness except for devices with low contraction rates, 

i.e.,  < 0.15 according to Table 3, which is rarely considered in practice. 

An iterative process was applied to the implicit Eq. (81), allowing computing the values 

of the kinetic factor  in a wide range of contraction rates. These are reported in Table 

4, showing that  is less than unity while increasing with increasing contraction rate. 

Table 4: Values of the kinetic factor  for some contraction rates, computed 

according to Eq. (81) 

  ( ) 2/51 +  

0.15 0.00186041 1.00465752 

0.20 0.00333175 1.00835021 

0.25 0.00525597 1.01319178 

0.30 0.00765952 1.01925894 

0.35 0.01057727 1.02665332 

0.40 0.01405454 1.03550757 

0.45 0.01814984 1.04599412 

0.50 0.02293925 1.05833852 

0.55 0.02852225 1.0728382 

0.60 0.03503165 1.08989353 

0.65 0.04264881 1.11005662 

0.70 0.0516298 1.1341153 

0.75 0.06235287 1.16324713 

0.80 0.07541303 1.19932872 

 

Table 4 reveals that if the approach flow velocity was not taken into consideration, then 

this would cause detrimental relative errors in the discharge coefficient calculation 

according to Eq. (83). As an example, considering the contraction rate  = 0.45, Table 4 

shows that a relative error of 4.6% would be made in the calculation of Cd if the effect of 

the kinetic factor is neglected. 

Additionally, since the kinetic factor  is less than 1, the quantity ( ) 2/51 +  in Eq. (81) 

is congruously expanded in a Taylor series up to the second order, resulting in the 

following quadratic relationship: 

( ) 0
10

1
5

10

1 22 =+−− −  oC     (84) 
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Eq. (84) is the so-called standard form of the quadratic equation in, having two distinct 

real roots, only one of which meets the requirement  < 1. It is expressed as follows: 

1.02 −−=    (85) 

where: 

( )5
20

1 2 −= − oC     (86) 

Table 5 contrasts the exact  values reported in Table 4 with the approximate values 

calculated according to Eq. (85) along with Eq. (86). 

Table 5: Comparison between exact and approximate values of the kinetic factor  

computed using Eq. (81) and (85), respectively. 

 
 Exact 

Eq. (77) 

  Approximate 

Eq. (81) 
Deviation (%) 

0.15 0.00186041 0.00186041 6.0318E-06 

0.20 0.00333175 0.00333175 3.709E-05 

0.25 0.00525597 0.00525597 0.00014556 

0.30 0.00765952 0.00765948 0.00045099 

0.35 0.01057727 0.01057715 0.00119093 

0.40 0.01405454 0.01405414 0.00280118 

0.45 0.01814984 0.01814877 0.00589074 

0.50 0.02293925 0.02293643 0.01227299 

0.55 0.02852225 0.02851548 0.02372357 

0.60 0.03503165 0.03501614 0.04427356 

0.65 0.04264881 0.04261442 0.08064473 

0.70 0.0516298 0.05155501 0.14486708 

0.75 0.06235287 0.06219107 0.25948591 

0.80 0.07541303 0.07505874 0.46979971 

 

Table 5 confirms that the exact and approximate Eqs. (81) and (85), respectively, give 

very close values, meaning that Eq. (85) is very accurate. The maximum deviation is less 

than 0.47% obtained for the greatest value of the contraction rate, i.e.,  = 0.80. 

Inserting Eq. (85) into Eq. (83), the sought discharge coefficient relationship is expressed 

as follows: 

2/5
2 1.01

1








−−+= 

o
d

C
C   (87) 
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Eq. (87) is the theoretical approximate relationship governing the discharge coefficient of 

the device derived from the kinetic factor method. 

In the wide range 0.15    0.80, the maximum deviation between the exact values of 

Cd given by Eq. (83) along with Eq. (81) and those computed using approximate Eq. (87) 

along with Eq. (86) is only 0.082%. This result shows that the discharge coefficient Cd 

can be calculated with excellent accuracy using the approximate Eq. (87). 

Additionally, it is obvious that Eqs. (72) and (87), giving the discharge coefficient Cd, 

which has been deduced from the two methods previously described, should give the 

same result. Thus, the equality between the two equations allows us to write the 

following: 

2/5
22/5*

1
1 1.01

1

2

1








−−+==

−− 
o

d
C

hC   (88) 

After simplifications and arrangements, the following final result is obtained: 

1
25/2*

1 1.01
4

5
−

−








−−+= h   (89) 

The maximum deviation between the exact values of h1
* given by implicit Eq. (68) and 

approximate values given by Eq. (89), for the same contraction rate, is less than 0.033%. 

This proves that Eq. (89) is highly reliable and accurate that the designer could use in Eq. 

(72). 

Additionally, Eq. (82) governing the discharge Q becomes the following: 

2/5
12

2/5
2 21.01

1
hmg

C
Q

o









−−+=     (90) 

Eq. (90) is the simplified form of the theoretical stage-discharge relationship that meets 

the requirements of semimodular devices. 

This equation shows in particular the importance of the upstream depth h1 in the 

calculation of the flow rate Q. The more precisely the upstream depth h1 is measured, the 

greater the flow rate Q is determined with great reliability. In agreement with Eq. (90), a 

relative error  in the measurement of the upstream flow depth h1 causes a relative error 

of 2.5 times  in the calculation of the flow rate Q. Thus, to minimize h1 reading errors, 

a double-precision Vernier gauge was used during the experiment. 

Experimental setup 

The main intent of this section of the paper is to describe, as carefully as possible, the 

experimental setup used to test the various designed CWTFs. 
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Eight CWTFs of different contraction rates (Table 6) were made in Plexiglass. Each of 

them was used to measure the flow rate Q that passes through a trapezoidal-shaped 

approach channel. According to the notations adopted in Figs. 1 and 2, the approach 

channel was characterized by a base width bo = 0.25 m, a height ho = 0.40 m, and an angle 

of the sloped side from horizontal w = 60°, corresponding to a side slope mo = cot (60°) 

= 0.57735 horizontal to 1 vertical. Hence, the top with Bo of the approach channel was as 

follows: 

oooo hmbB 2+=    (91) 

That is, 

Bo = 0.71188 m  0.712 m 

According to Eq. (6), one may derive the following: 

=









=














= −− 33.833285.83

40.02

71188.0
tan2

2
tan2 11

max
o

o

h

B
  

This is the apex angle value to not exceed for the triangular inlet section of the CWTFs 

involved in the planned experimental tests. 

For the reasons mentioned during the section dedicated to the description of the device, 

the transition between each of the devices and the approach channel was ensured by an 

angle  = 45°, implying an angle g = 45/2 =22.5° according to Eq. (26). 

For each of the seven contraction rates adopted, the corresponding values of the  

parameter and those of the top width B of the inlet section of the device were calculated 

according to Eq. (3) and (2), respectively. Additionally, using Eqs. (5), (9) and (8), 

respectively, the apex angle  of the inlet triangular section of the device, the top width b 

and the apex angle of the outlet section were determined for each device. The results of 

these calculations are grouped in Table 6. 

Table 6: Characteristics of the eight considered devices 

Device  = b/B 
 

Eq. (3) 

B (m) 

Eq. (2) 

 (°) 

Eq. (5) 

b (m) 

Eq. (9) 

 (°) 

Eq. (8) 

1 0.15 0.8727245 0.6213 75.66 0.0932 13.29 

2 0.20 0.8793077 0.6260 76.08 0.1252 17.79 

3 0.25 0.885991 0.6307 76.50 0.1577 22.30 

4 0.30 0.8927766 0.6355 76.93 0.1906 26.81 

5 0.35 0.899667 0.6404 77.36 0.2241 31.30 

6 0.40 0.9066646 0.6454 77.79 0.2582 35.77 

7 0.45 0.9137718 0.6505 78.23 0.2927 40.20 

8 0.50 0.9209914 0.6556 78.67 0.3278 44.56 
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In the following, the sizing steps of the device characterized by the contraction rate  = 

0.15 are taken as an example. However, this approach has been submitted to all the 

devices considered in Table 6, resulting in the sizing of each of them. Thus, according to 

Eq. (13), the radius R2 (Figs. 1, 3) is as follows: 

( ) mBR o 15467223.015.08727245.0171188022.025.0)1(
4

1
2 =−=−=   

That is, 

mcR 5.152   

For  = 45°, the xD and yD coordinates (Figs. 1, 3) are equal. They are defined by Eq. (16) 

as follows: 

𝑥𝐷 = 𝑦𝐷 =
√2

8
    𝐵𝑜    (  1 −    𝜀  𝛽   )   =

√2

8
× 0.71188022 × (  1 −    0.8727245 × 0.15  )

= 0.10936978   𝑚

 

That is, 

cmyx DD 93.10=  

According to Eq. (23), the vertical distance 'PP (Figs. 1, 3) is such that: 

PP′ =
1

4
𝐵𝑜 (1 −

√2

2
) (1 − 𝜀𝛽)

=
1

4
× 0.71188022 × (1 −

√2

2
) × (1 − 0.8727245 × 0.15) 

Hence, 

cmm 53.404530245.0'PP =  

With the help of Fig. 3, one may then deduce the following: 

222
'PPxDP D +=  

That is, 

cmmDP 84.11118381.004530245.010936978.0 22 =+=  

According to Eq. (29), the arc of circle PD  is given as follows: 

PD ∩=
1

4
𝐵𝑜(1 − 𝜀𝛽)𝜑 =

1

4
× 0.71188022 × (1 − 0.8727245 × 0.15) ×

𝜋

4
= 0.12147928𝑚 
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That is, 

cm15.12PD   

According to Eq. (34) for  = 45°, the radius R1 (Fig. 1, 3) is expressed as follows: 

𝑅1 =
1

4
(3 + 2√2)𝐵𝑜(1 − 𝜀𝛽)

=
1

4
× (3 + 2√2) × 0.71188022 × (1 − 0.8727245 × 0.15) 

Whence, 

cmmR 15.9090149582.01 =  

The length ET (Figs. 1, 3) of the device’s converging sections is given by Eq. (38), for  

= 45°, as follows: 

ET =
1

2
(√3 + 2√2 −

√2

4
) 𝐵𝑜(1 − 𝜀𝛽)

= 1.03033009 × 0.71188022 × (1 − 0.8727245 × 0.15)
= 0.63745381𝑚 ≈ 63.75𝑐𝑚 

Thanks to the previously calculated dimensions, the device characterized by the 

contraction rate  = 0.15 has been geometrically entirely defined and represented in Fig. 

(7). It was decided to provide this device with a throat length approximately equal to 70 

cm, representing the length VE (Fig. 7). 

 
Figure 7: Plan view of the tested device of contraction rate  = 0.15 inserted in the 

experimental installation 
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Table 7 summarizes the main characteristics of the device characterized by a contraction 

rate  = 0.15, knowing that the top widths B and b are given in Table 6. 

Table 7: Characteristics of the tested device characterized by a contraction rate  = 

0.15 and   = 45°. Notations according to Figs. 1 and 3 

 
R1  

(cm) 

R2  

(cm) 
DD yx =  

(cm) 

PP′  

(cm) 

ET  

(cm) 

VE  

(cm) 

0.15 90.15 15.50 10.93 4.53 63.75 70 

The walls of the device as well as those of the trapezoidal approach channel were made 

in one piece using a flexible Plexiglass plate 1 mm thick; its variable width was carefully 

calculated to ensure the same height ho both for the approach channel and for the device, 

including the transition. 

The installation represented in Fig. 7 was fed by an underground water storage tank 

working at a constant level and equipped with a submerged pump whose maximum flow 

rate was 60 l/s. The flow supplied by the pump was routed through a steel pipe over a 

certain distance in which a high-power and easy-to-use diaphragm flowmeter previously 

calibrated with care was inserted, which allowed the experimental flow rates to be 

measured at  0.2 l/s. At the outlet of the submerged pump, a valve is inserted into the 

steel pipe, making it possible to vary the flow rate and adjust it to the desired value. The 

rest of the pipe was made of flexible plastic, whose role was to convey the flow to the 

canal supply basin (Fig. 7). This was equipped with a perforated metal grid whose main 

role was to make the flow quiet at the inlet of the approach channel. 

At the downstream outlet of the device, the flow is collected in a water recovery basin 

fitted with a siphon whose role is to drain the basin when the water has reached a certain 

level (Fig. 7). The water leaving the siphon is collected by a semiburied rectangular 

channel that carries the water to the underground water supply basin. Then, the flow 

repeats its itinerary, ensuring the closed-circuit operation of the aforementioned 

installation. 

The measurement of the flow depth at the inlet section of the device must be as precise 

as possible because it significantly influences the flow rate. For this reason, the choice 

was made for the double precision Vernier gauge, which causes an absolute error of only 

0.02 mm in the depth measurement. 

During the tests, the flow rate Q was varied over the following wide range [0.545 l/s; 49 

l/s], resulting in upstream depths h1 varying in the range [6.35 cm; 38.95 cm]. The ranges 

of the upstream measured depth h1 and the flow rate Q are summarized in Table 8 for 

each of the eight tested devices. 
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Table 8: Range of the flow rates Q and depths h1 used for each of the eight tested 

devices 

Device 
Contraction 

rate  

Number of 

measurements 

Discharge range 

(l/s) 

Range of upstream 

depths (cm) 

1 0.15 113 0.63  Q  12.41 11.26  h1  37.05 

2 0.20 149 0.72  Q  16.68 10.54  h1  37.05 

3 0.25 118 0.628  Q  22.63 9.08  h1  38.06 

4 0.30 158 0.704  Q  28.65 9.08  h1  38.69 

5 0.35 152 0.545  Q  33.83 7.42  h1  38.64 

6 0.40 226 0.572  Q  40.05 7.12  h1  38.95 

7 0.45 287 0.578  Q  43.54 6.78  h1  38.12 

8 0.50 282 0.557  Q  49.00 6.35  h1  38.02 

 

As shown in Table 8, each tested device is subjected to a series of flow rates Q delivered 

by the pump, which controls the admission of the flow. Each series of flow rates Q results 

in a series of upstream depths h1. During the tests, the installation used allowed us to 

collect 1485 measurement points of the pair of parameters (Q, h1), which corresponds to 

a representative sample on which reliable results and conclusions can be obtained. 

RESULTS 

This section is devoted to the experimental validation of Eq. (83), which governs the 

theoretical discharge coefficient Cd,Th. If this relationship is experimentally verified, then 

Eq. (86), which regulates the flow rate Q, should also be. 

For each pair of experimentally measured values (QExp, h1), the experimental discharge 

coefficient Cd,Exp is computed using the following relationship: 

2/5
12

,
2 hmg

Q
C

Exp
Expd =     (92) 

Thus, the 1485 pairs (QExp, h1) collected during tests allowed us to calculate as many 

discharge coefficients Cd,Exp with the help of Eq. (92). 

Referring to Eq. (87) along with Eq. (86), Cd,Exp should be constant for a given device 

under test, regardless of the pair of values (QExp, h1). Theoretically, the discharge 

coefficient calculated according to Eq. (92) would give a value that depends only on the 

contraction rate  of the tested device. For each of the tested devices, the calculation based 

on Eq. (92) shows that the obtained discharge coefficients vary around an average value, 

which is reported in Table 9. For each tested device, the deviation between the minimal 

and maximal experimental discharge coefficient values is extremely small. The maximum 
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deviation is approximately 0.891% obtained for  = 0.30. More precisely, the deviation 

varies between 0.77% and 0.891% in the considered range of  values. These deviations 

are probably due to handling errors during the tests. Additionally, no influence of the 

upstream depth h1 on the discharge coefficient Cd,Exp was observed, which means that Eq. 

(52), derived from dimensional analysis, reduces to the following: 

( )=dC     (93) 

Table 9 summarizes the values of the theoretical and average experimental discharge 

coefficients for each tested device, including the deviations between them. 

Table 9: Experimental and theoretical values of the discharge coefficients for each 

tested device 

Device  
Cd,Exp Eq. (85) Average 

Cd,Exp 

Cd,Th 

Eq. (80) 

Deviation 

(%) Min. Value Max. Value 

1 0.15 0.28621568 0.28871441 0.2874825 0.28754976 0.0243 

2 0.20 0.28742939 0.28981651 0.2885983 0.28860667 0.0029 

3 0.25 0.28862706 0.29098787 0.2898326 0.2899924 0.0551 

4 0.30 0.29030159 0.29291223 0.2916712 0.2917289 0.0198 

5 0.35 0.29268030 0.29510011 0.2936831 0.29384524 0.0680 

6 0.40 0.29497287 0.29756542 0.2962548 0.29637927 0.0420 

7 0.45 0.29792914 0.30057013 0.2991708 0.2993802 0.070 

8 0.50 0.30143525 0.30412473 0.3027775 0.30291208 0.0444 

 

The maximum deviation between the average value of the experimental discharge 

coefficient Cd,Exp and that of the theoretical discharge coefficient Cd,Th is 0.07%. This 

means that Eq. (87), which governs the theoretical discharge coefficient, is 

experimentally verified. It can then be used with confidence in the range of validity 0.15 

   0.50, without undergoing any correction. 

Using Table 9, Fig. 8 shows the variation in the discharge coefficient Cd as a function of 

the contraction rate. The discharge coefficient Cd increases with increasing contraction 

rate, which was expected. The open signs, corresponding to the average values of the 

experimental discharge coefficient, are close to the theoretical predictions. 
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Figure 8: Variation in Cd () according to Table 9. (o) Average Cd,Exp value 

Additionally, in the range of validity 15    0.50, the discharge coefficient of the device 

is in no way influenced by the upstream flow depth h1. Outside this range, further testing 

is needed. 

However, based on observations and graphical optimization calculations involving many 

configurations with  = 45°, the authors recommend adopting the ratio B/Bo =  = 0.918 

corresponding to a contraction rate  = 0.48, according to Eq. (3), for which the 

dimensions of the device are ideal. The perfect geometrical similarity of the triangle was 

the basis of this optimization study, which made it possible to write that the ratios B/ho 

and b/ho are constants for a given apex angle in accordance with Eqs. (4) and (7), 

respectively. Furthermore, the recommended value  = 0.918 results in a transition 

between the approach channel and the device that is neither too short nor too long. 

Additionally, for the optimal contraction rate  = 0.48, the length ET of the converging 

sections of the device (Figs. 1 and 3) is such that 5763.0/ET oB according to Eq. (38). 

For the best design of the throat, it is recommended to adopt the ratio “Throat Length”/Bo 

= EV/𝐵𝑜= 0.60, according to the notations of Fig. 1. 

Table 10 records the geometrical characteristics of the device recommended by the 

authors. The recommended characteristics are related to the top width Bo of the approach 

channel. 
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Table 10: Geometrical characteristics of the ideal CWTF corresponding to  = 0.48 

and  = 45°. Notations according to Fig. 1 

𝐵/𝐵𝑜 0.918 

𝑏/𝐵𝑜 0.4407 

𝑅2/𝐵𝑜 0.140 

𝑅1/𝐵𝑜 0.815 

𝑥𝐷/𝐵𝑜 = 𝑦𝐷/𝐵𝑜 0.0989 

PD ∩/𝐵𝑜 0.110 

ET/𝐵𝑜 0.5763 

VE/𝐵𝑜 0.600 

ℓ(𝑥)/𝐵𝑜Eq. (45) 0.4407 + 1.63 (1 − √1 − 1.505(𝑥/𝐵𝑜)2) 

CONCLUSION 

The paper addressed down to the tiniest detail a new type of flume. This is the curved 

wall triangular flume, abbreviated CWTF, composed of a converging triangular section 

whose opening angle is variable along its entire length. It is endowed with a throat 

downstream, which is likewise a triangular section, with a constant apex angle. Except 

for the difference in the cross-section shape, the CWTF has the configuration of the 

modified Parshall. It brings together the advantages of the V-notch and those of the 

Parshall. The triangular section provides better accuracy in measuring the flow rate, 

whether low or high, while the Parshall provides notably a single-valued function between 

the flow rate and upstream depth due to its design. 

It has been shown that the converging section is generated by two circles tangent to each 

other and tangent to a horizontal straight line passing along the top edge of the throat [Fig. 

(1)]. To allow the designer to easily achieve the geometry of the device, the appropriate 

dimensions of the flume have been presented in the form of dimensionless ratios, relating 

them to the top width Bo of the approach channel regardless of its shape [Eqs. 1 to 45]. 

These have been carefully derived from indisputable geometrical considerations. It was 

observed that the dimensions of the device were only dependent on the contraction rate  

of the converging section after setting the angle, which ensures a smooth transition 

between the flume and the approach channel; the contraction rate  was defined as the 

ratio of the top width b of the outlet section to the top width B of the inlet section of the 

device, i.e.,  = b/B. 

The study has been ongoing with the analytical determination of the stage-discharge 

relationship, hence that of the discharge coefficient of the device, after having 

theoretically hypothesized the formation of a control section somewhere inside the throat. 

The observations made in the laboratory on the behavior of the flow in the eight tested 

devices strengthened this hypothesis. 
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The stage-discharge relationship has been successfully determined following two 

different rigorous theoretical approaches while taking into account the effect of the 

approach flow velocity. The first method consisted of judiciously manipulating the energy 

equation applied between the inlet sections of the device and the throat. After some 

mathematical developments, implicit Eq. (68) in h1
* has been obtained solely depending 

on the contraction rate  of the device. To avoid iterative calculations, Eq. (68) was 

approximated by the Hoerl model, which led to the approximate Eq. (69). The maximum 

deviation between the exact Eq. (68) and approximate Eq. (69) is less than 0.53% within 

the wide range 0.15    0.80, inducing a maximum error less than 1.27% in the 

discharge coefficient Cd computation according to Eq. (73). If this error is not appropriate, 

the user can calculate the exact value of h1
* by subjecting the implicit Eq. (68) to an 

iterative process whose speed of convergence will be improved by introducing the initial 

value h1,0
* computed according to Eq. (69). This allows the calculation of an exact 

theoretical value of the discharge coefficient Cd according to Eq. (72). 

The second method adopted consisted of expressing the kinetic factor , which is closely 

related to the approach flow velocity, as expressed by Eq. (74). The upstream velocity 

head is correctly assumed to be a fraction of the corresponding upstream flow depth h1. 

After appropriate manipulations, the kinetic factor  was expressed as a function of the 

contraction rate  of the device in accordance with Eq. (81). Due to its implicit character, 

Eq. (81) has been expanded in a Taylor series up to the second-order, resulting in the 

quadratic Eq. (84), whose real solution is given by the explicit Eq. (85). This allowed us 

to deduce Eq. (87), which governs the theoretical discharge coefficient Cd. Eq. (87) along 

with Eq. (86) is a very accurate theoretical formula that can be used with great confidence. 

The study was pursued by a deep experimental protocol conducted on eight devices 

characterized by a contraction rate  varying in the range [0.15; 0.50]. The devices were 

tested in an appropriate installation that allowed us to collect nearly 1500 measurement 

points of the pair of parameters (discharge Q; upstream flow depth h1). The main objective 

of the tests was to validate or refine the theoretical discharge coefficient Cd relationship 

in accordance with the obtained experimental results. For all the tested devices, the 

analysis of the experimental measurements revealed excellent agreement between the 

theoretical and experimental discharge coefficients. The calculated maximum deviation 

was only 0.07%, which means that Eq. (87), which governs the theoretical discharge 

coefficient Cd of the device, does not need any correction, provided respecting the 

following range of validity 0.15    0.50. 

By the end of the paper, using an optimization procedure, the authors recommended the 

use of an ideal CWTF characterized by a contraction rate  = 0.48. The dimensions of the 

device, related to the top width Bo of the approach channel, are presented. 

The future planned research concerns the second version of the device equipped with a 

downstream diverging section or discharge. It serves to ensure the connection between 

the throat and the downstream walls of the main channel and to be the seat of a hydraulic 

jump. The main role of the hydraulic jump is to transform the strong kinetic energy in the 
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throat into potential energy in the converging section, allowing the device to operate with 

a minimum of head losses. It is then required to determine the limit of the semimodularity 

beyond which the flow rate is no longer a single-valued function of the upstream depth 

h1. The limit of the semimodularity, which corresponds to the ratio of the total 

downstream head to the total upstream head, will define the head losses caused by the 

device; these losses should be as low as possible, representing only a few percent of the 

total head, which is likewise approximately equivalent to the head loss required for proper 

operation of a similar suppressed weir for which the potential energy accumulated 

upstream is almost entirely lost downstream. 
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