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ABSTRACT 

Ozone is known to be a powerful oxidant and disinfectant in drinking water production 

processes. The ozone dosing process presents a particularly difficult control problem due 

to its nonlinear behavior. 

Most water treatment plants use ozone dosing by determining the ozone concentration 

based on operational experience without considering temporal variations in water 

quantity and quality. In this case, this approach can lead to an overdosing that can increase 

costs or an underdosing that will influence the quality of the treated water. 

Two deep learning models, namely, the DNN model and CNN model, were applied for 

ozone dosing predictive modeling tasks. Comparing the results obtained in the training 
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and testing processes, we notice that the DNN model with 5 hidden layers outperforms 

the CNN model. These results seem very encouraging, and the methodologies seem 

promising. 

Keywords: Ozone dosing, Drinking water treatment, Deep learning, Predictive modeling 

INTRODUCTION 

Drinking water treatment is critical in meeting rising water demand, utilizing both 

physical and chemical processes to produce high-quality drinking water from surface 

water sources (Achour and Chabbi, 2014; Harrat and Achour, 2016; Achour and Chabbi, 

2017; Achour et al., 2019). The ozonation process, aimed at substituting chlorine for 

disinfection, removing odor and color, and oxidizing organic matter and micropollutants, 

plays a crucial role in this process (De Vera et al., 2016; Gomes et al., 2017). 

Ozone has become widely adopted in drinking water treatment plants as a primary means 

of disinfection in recent years (Von Gunten, 2003). The success of ozonation disinfection 

depends on the amount of ozone used (or ozone exposure) (Wols et al., 2008; Clark et al., 

2002). Additionally, ozonation has been found to enhance coagulation, settling, and 

filtration processes (Muniyasamy et al., 2020). However, overusing ozone in the 

ozonation process is not cost-effective and can lead to health issues due to high levels of 

disinfection byproducts (DBP) (da Silva et al., 2014; Sun et al., 2020). 

The optimization of ozone dosage is crucial for reliable drinking water treatment. Dosing 

that is too low can result in inadequate removal of compounds and unreliable disinfection 

(Oh et al., 2010; Lee et al., 2014). On the other hand, excessive dosing is not only 

uneconomical but can also cause health problems from high levels of disinfection 

byproducts (da Silva et al., 2014; Sun et al., 2020). To ensure effective treatment, there 

are two methods for controlling ozone dosage in the ozonation process (Muniyasamy et 

al., 2020; Kaiser et al., 2013; Kang et al., 2008, Dan et al., 2021). 

The most commonly used method for controlling the ozonation process in drinking water 

treatment is maintaining a constant ozone dosage. Another approach is keeping a stable 

dissolved ozone residual level; however, this method is less frequently used. The raw 

water's quantitative and qualitative variability affects the dissolved ozone residual and 

can be challenging to predict with precise parameters, making accurate mathematical 

modeling difficult. (Elovitz et al., 2000; van der Helm et al., 2009;Shin et al., 2016; 

Audenaert et al., 2010; van der Helm et al., 2007). 

In addition, maintaining a constant ozone dosage is a challenge in the ozonation process 

due to its complex physical and chemical reactions, long time delay, nonlinearity, and 

multiple sources of perturbations and uncertainties. Keeping a constant dosing strategy 

under such unpredictable conditions is difficult to achieve (Niu et al., 2021). 

Artificial intelligence (AI) has the potential to effectively address complex challenges in 

water engineering due to its ability to generalize and adapt and its straightforward design. 
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This results in cost savings and optimized processes in the water and wastewater treatment 

industries, which have widely adopted machine learning (ML) and deep learning (DL) 

technologies (Alam et al., 2022; Xie et al., 2022). 

Several studies in the water engineering industry have used ML techniques, including 

artificial neural networks (ANNs), recurrent neural networks (RNNs), random forest 

(RF), and support vector machine (SVM) (Kim et Ahn., 2022; Ren et al., 2020; Adoabi 

et al., 2022). 

Artificial intelligence has been applied in the prediction of ozone dose in water treatment 

with great success in recent years. The use of machine learning algorithms such as 

artificial neural networks (ANNs), support vector machines (SVMs), and decision tree 

algorithms has been demonstrated to effectively predict the ozone dose in water treatment 

processes. 

Wang et al. (2014) applied an artificial neural network (RBF) to predict the ozone dose 

in a water treatment process. The results showed that the ANN model was able to 

effectively predict the ozone dose with high accuracy. In another study, Dongsheng et al. 

(2017) used a support vector machine algorithm to predict the ozone dose in water 

treatment. The results of the study showed that the SVM model was able to achieve high 

accuracy in the prediction of the ozone dose. Some studies have even utilized hybrid 

techniques to improve modeling. In a study conducted by Djeddou et al. (2022) at a full-

scale drinking water treatment plant in Algeria, various hybrid models were evaluated for 

predicting ozone dosing. The study revealed that the most effective hybrid ML technique 

was a combination of a radial basis function neural network (RBFNN) with discrete 

wavelet transform (DWT), as it outperformed other hybrid models in predicting ozone 

dosing accurately. 

In this study, two deep learning models are presented for predicting ozone dosing in a 

full-scale drinking water treatment plant located in Oued Al-Athmania, Algeria. The main 

goal of this application is to evaluate the ability of deep learning models to optimize the 

ozonation process. The results will serve as a foundation for further model refinement, 

particularly the evaluation of the innovative approach, the Ozone Dosing Dynamic 

Strategy (ODDS), which accounts for temporal variations in raw water quality. 

MATERIAL AND METHODS 

Oued Al-Athmania water treatment plant Presentation 

It is located in eastern Algeria and has the capacity to treat 262,000 m3/day of water from 

the Sidi Khlifa reservoir dam, which is fed solely by the Beni Haroun dam. 

Preozonation is carried out upstream, and then the water goes through coagulation, 

flocculation, settling, biofiltration, disinfection of nitrified water by ozonation, carbon 

filtration, and final disinfection with chlorine gas. 
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Dataset collection 

The data used for ozone dosing were obtained from daily operation data, including 

various measured parameters, namely: 

1. pH; 

2. Conductivity; 

3. Temperature; 

4. Turbidity; 

5. Dissolved oxygen (DO), 

6. Total suspended solids (TSS), 

7. Organic matter (OM); 

8. Aluminum sulfate (Al2SO4) as coagulation; 

9. Sulfuric acid (H2SO4). 

The measurements were taken between 2009 and 2010, covering all seasonal changes in 

the factors being considered. The input and output data were normalized to a range 

between 0 and 1, and their statistical parameters are summarized in Table 2. 

Table 1: Statistical parameters of inputs and output 

 Min. Max. Average S.D. C.V. 

Inputs Temp.(°C) 5.690 21.364 13.542 4.840 0.357 

pH 7.544 8.413 8.032 0.247 0.030 

Cond.(µs/cm) 962.548 1171.528 1082.391 53.067 0.0490 

Turb. (NTU) 4.460 19.088 10.122 3.371 0.333 

O2 (mg/l) 2.476 8.296 4.998 1.785 0.357 

TSS (mg/l) 2.924 15.038 8.325 3.099 0.372 

OM (mg/l) 1.124 1.762 1.464 0.178 0.121 

Al2SO4 (mg/l) 16.717 44.994 27.721 5.389 0.194 

H2SO4 (mg/l) 0.977 10.306 4.794 3.080 0.642 

Output O3 (mg/l) 1.3 3.45 2.28 0.34 0.15 

Deep Neural Networks 

Deep neural networks (DNNs) are a type of artificial neural network with multiple hidden 

layers between the input and output layers. DNNs with more hidden layers can learn and 

model more complex relationships in input data than shallow neural networks with fewer 

hidden layers. As a result, DNNs are increasingly being used in a variety of fields, such 
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as image and speech recognition, natural language processing, and predictive modeling 

(LeCun et al., 2015; Schmidhuber 2015; Goodfellowet al., 2016). DNNs have shown 

promising results in addressing real-world problems such as classification and regression 

in predictive modeling. Forward-feeding neural networks, in particular, have been widely 

used in many applications where data flow sequentially from input to output layers. 

Reza et al. (2021) built deep neural network (DNN) algorithms to predict water 

temperature in the Los Angeles River in southern CA, USA. The DNN algorithm 

outperformed the other models. The DNN model of determination was 26 and 12% higher 

compared to the two other models. 

Le et al. (2019) proposed a DNN model to forecast the flow rate at the Son Tay 

hydrological station on the Red River, Vietnam. The study revealed that the DNN model 

achieved remarkable flood forecasting performance, requiring only a small amount of 

data. These outcomes suggest that the DNN model could serve as the foundation for 

constructing a real-time flood warning system on the Red River, Vietnam. 

According to Agatonovic-Kustrin and Beresford (2000), the architecture of DNNs is 

inspired by the human brain's information processing capabilities. This property makes 

DNNs more suitable than other machine learning models, such as support vector 

machines and decision trees, for processing large datasets and extracting meaningful 

features. 

DNNs are made up of neurons that improve through the learning process. The layers are 

fully connected, meaning that each neuron in a layer receives input from all neurons in 

the previous layer and in turn serves as input to all neurons in the subsequent layers (Fig. 

1). With the ability to analyze intricate data patterns, DNNs have been utilized in 

regression analysis, classification, and unsupervised data clustering across various fields. 

 

 

Figure 1: Deep Neural Network 
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Convolutional Neural Networks 

Convolutional neural networks (CNNs) are artificial neural networks that are specifically 

designed for image and video recognition tasks. It extracts features from the input image 

using convolutional layers, which are then processed by activation functions, pooling 

layers, and fully connected layers to make a final prediction (LeCun et al., 2015). The use 

of convolutional layers, which slide a small filter over the input image, applying 

transformations to the pixels and building a feature map that summarizes the important 

information in the input, is a key feature of CNNs. A CNN can learn increasingly complex 

features and representations of the input data by employing multiple convolutional layers 

(Baek et al., 2020). 

Convolutional neural networks (CNNs) are comparable to deep neural networks (DNNs); 

however, they are specifically designed to analyze visual imagery. This allows for the 

incorporation of image-specific features into the neural network architecture, making it 

well suited for tasks that involve images (O'Shea and Nash 2015). 

CNNs can effectively map a large dataset to a final output through a straightforward but 

precise architecture (Fig. 2). Its weight sharing structure and pooling techniques allow for 

a reduction in the number of parameters, leading to superior performance compared to 

DNNs, especially when analyzing visual images. It is worth noting that CNNs are 

spatially invariant, meaning they do not capture the position and orientation of objects. 

Thus, if data position is crucial, CNNs may not be a suitable option. In recent times, CNNs 

have seen widespread use in a range of water and wastewater treatment applications 

(Lowe et al., 2022). 

 

Figure 2: Convolutional Neural Network 

Performance Evaluation 

The training and testing processes of both the DNN and CNN models were assessed using 

statistical parameters such as the root mean square error (RMSE), mean absolute error 

(MAE), correlation coefficient (R), and Nash-Sutcliffe efficiency coefficient (NSE). 

These parameters were expressed as follows: 
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where OD is the ozone dose (mg/l) and OD̅̅ ̅̅   is the mean ozone dose (mg/l). 

RESULTS AND DISCUSSION 

The feasibility of the proposed models in predicting ozone dosing was evaluated by 

training two different deep learning structures, a DNN and a CNN, on a training set. The 

prediction performance of these two models on new samples stored as a test set was 

reported. Both the DNN and CNN models were fed with a list of nine inputs. 

The number of hidden layers for the two networks was determined through a trial and 

error process using a manually specified subset of the search space. This process started 

with the simplest architecture, a one-layer network, and took computation time per step 

into consideration. 

The DNN model comprised 5 hidden dense layers, as a further increase in the number of 

layers did not result in a significant decrease in loss while also negatively impacting 

processing time, according to testing. The CNN model consisted of 4 convolutional 

layers, with a similar outcome where higher layers did not significantly improve loss. The 

training and testing were carried out on a computer equipped with an ASUS AMD Rayzen 

TM 5 R5-3550H CPU at 3.7 GHz and 16 GB of RAM. 

The models were constructed using the Keras library in Python, which provides an 

interface for deep learning. MSE was selected as the loss function due to its high 

sensitivity to large errors compared to the mean absolute error. The Adam optimizer was 

utilized to optimize the CNN model, while the DNN model was optimized using the 

RMSprop method. Both models were trained on the same dataset of 182 samples, with 

the datasets being randomly divided into training and testing sets in a 70:30 ratio. The 

hyperparameter values that were selected are presented in Table 2. 
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Table 2: Developed Models Description 

 CNN model DNN model 

Input shape (n, 9, 1) (n, 9) 

Number of layers Total of 7 Total of 7 

Batch size 8 32 

Number of epochs 500 500 

Loss function MSE MSE 

Optimizer Adam RMSprop 

Learning rate 10-3 10-3 

Number of parameters 70,209 15,265 

 

According to the results of the experiment with the training dataset, the prediction of 

ozone dosing resulted in an estimated root-mean-squared-error of 0.0382 and 0.0426 for 

the CNN and DNN models, respectively. The mean absolute error was 0.091 for the CNN 

model and 0.0299 for the DNN model. The performance parameters of the CNN model 

showed R = 0.9936 and NSE = 0.9861, whereas the DNN model had a slightly better 

correlation coefficient estimated as R = 0.9967 and NSE = 0.9845, which is close to the 

CNN model. Both models, the CNN and DNN, performed well in the training process, as 

shown in Table 3. 

In contrast, during the testing phase, the prediction of ozone dosing (OD) by the DNN 

model has an estimated RMSE of 0.1699 and MAE of 0.1, whereas the CNN model has 

an RMSE of 0.3341 and MAE of 0.1982. The performance of the DNN model remains 

good with R = 0.8784 and NSE = 0.7554, whereas the performance of the CNN model 

significantly decreases with R = 0.5443 and NSE = 0.2428. 

 

Table 3: Performance parameters of the CNN and DNN models 

 Train Test 

 RMSE MAE R NSE RMSE MAE R NSE 

CNN 

model 
0.0382 0.0291 0.9936 0.9861 0.3341 0.1982 0.5443 0.2428 

DNN 

model 
0.0426 0.0299 0.9967 0.9845 0.1699 0.1000 0.8784 0.7554 

 

The results indicate that the DNN model has better generalization abilities and 

outperforms the CNN model significantly when tested on new data that were not present 

in the training phase. In terms of complexity, the CNN model has a significantly higher 

number of parameters (70,209) compared to the DNN model (15,265). 
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Figs. 3, 4, 5 and 6 present the scatter plot of the observed ozone dosing compared to the 

predicted values by both the DNN and CNN models, as well as the response of the DNN 

model in predicting ozone dosing. 

 

Figure 3: Observed ozone dosing vs predicted ozone dosing using the CNN model. 

 

 

Figure 4: Observed ozone dosing vs predicted ozone dosing using the DNN model. 
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Figure 5: Response of the DNN model for the prediction of ozone dosing (all data). 

 

 

Figure 6: Response of the CNN model for the prediction of ozone dosing (all data). 
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CONCLUSION 

Deep learning (DL) models are applied to predict ozone dosing in a full-scale drinking 

water treatment plant. A comparison was made between a deep neural network (DNN) 

and a convolutional neural network (CNN) in terms of their prediction performance and 

simplicity. The results indicated that both models were capable of accurately predicting 

ozone dosing during the training phase, with the DNN model being faster and producing 

fewer errors (root mean square error and mean absolute error). 

In terms of prediction accuracy, the testing results show that the DNN model outperforms 

the CNN model. Because of its larger number of parameters, the CNN requires more data 

for training and has a longer computation time. To obtain accurate predictions, it is critical 

to choose appropriate hyperparameters, architecture, and input parameters; however, this 

may result in longer computation time and larger training data requirements for the CNN 

model. 

These findings spur us to continue exploring ways to enhance prediction accuracy and 

optimize the use of DNNs, as well as to examine hybrid approaches that incorporate the 

best features of both deep learning models. Additionally, there are several aspects of the 

models developed in this study that warrant further study, such as determining the impact 

of various inputs on generalization and efficiency. 
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